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Table 1. State-of-the-art 2D face recognitio works are trained 

on millions of images and tested on thousands of identities. How- 

ever, 3D face recognition algorithms are tested on just a few hun- 

dred identities. The proposed FR3  is trained on 3.1M 3D 

scans and tested on 1.85K identities. 

 

Dee works trained on millions of facial images are 

believed to be closely approaching human-level perfor- 

mance in face recognition. However, open world face 

recognition still remains a challenge. Although, 3D face 

recognition has an inherent edge over its 2D counterpart, 

it has not benefited from the recent developments in deep 

learning due to the unavailability of large training as well 

as large test datasets. Recognition accuracies have already 

saturated on existing 3D face datasets due to their small 

gallery sizes. Unlike 2D photographs, 3D facial scans 

cannot be sourced from the web causing a bottleneck in the 

development of deep 3D face recognitio works and 

datasets. In this backdrop, we propose a method for gener- 

ating a large corpus of labeled 3D face identities and their 

multiple instances for training and a protocol for merging 

the most challenging existing 3D datasets for testing. We 

also propose the first deep CNN model designed specifically 

for 3D face recognition and trained on 3.1 Million 3D fa- 

cial scans of 100K identities. Our test dataset comprises 

1,853 identities with a single 3D scan in the gallery and an- 

other 31K scans as probes, which is several orders of mag- 

nitude larger than existing ones. Without f uning on this 

dataset, ou work already outperforms state of the art 

face recognition by over 10%. We f une ou work on 

the gallery set to perform end-to-end large scale 3D face 

recognition which further improves accuracy. Finally, we 

show the efficacy of our method for the open world face 

recognition problem. 

based face recognition i ed to have surpassed human 

performance [54]. However, the recent MegaFace chal- 

lenges [27, 40] have shattered this myth, revealing that face 

recognition is still an unsolved problem. 

Two-dimensional face recognition using CNNs on con- 

ventional photographs has shown remarkable performance 

on ben arks like LFW [24] and Janus [29]. One of the 

main factors for this accomplishment is the ability of CNNs 

to learn from massive training data which is readily avail- 

able. For instance, Fac  [49] was trained on 200M tex- 

tured images of 8M identities while VGG-Face [41] used 

2.6M photos of 2,622 dist t subjects for training. Despite 

this phenomenal performance and availability of data, 2D 

face recognition is challenged by changes in illumination, 

pose and scale [1]. Furthermore, facial texture is not always 

stable for identities as it can change with make up. On the 

other hand, 3D face recognition has the potential to address 

these shortcomings. Although this modality in face recog- 

nition is gaining popularity [2, 4, 8, 17, 18, 32, 35], li ture 

survey shows that there is no deep CNN designed specifi- 

cally for 3D face recognition. This is primarily because of 

the lack of huge amounts of 3D training and test data. 3D 

face d annot be obtained by crawling the web [27,40,41] 

and it requires great efforts to collect a respectable sized 

dataset. For instance, the largest publicly available 3D face 

dataset, ND-2006 [15] (a superset of FRGCv2 [45]) has 

1. Introduction 
Face recognition, being a highly non-intrusive biomet- 

ric [10], is fast becoming the tool of choice [38] in the do- 

mains of surveillance (e.g., border control,  track- 

ing, identification), security (e.g., system login, banking, 

file encryption) and entertainment (e.g., human computer 

in ction, 3D animation, virtual reality). Advancements 

in Deep Learning have brought about revolutionary im- 

provements in various computer vision tasks where CNN 
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Modal- 

ity 
Model \ 

Technique 

Input 

Size 

Training Testing NW 

Param IDs Scans IDs Scans Dataset 

 

 
2D 

 

VGG-Face [41] 

DeepFace [54] 

Fac  [49] 

MF2 [40] 

224 × 224 

152 × 152 

220 × 220 

- 

2.6K 2.6M 

4K  4.4M 

8M 200M 

672K 4.7M 

5K  13K LFW 

5K  13K LFW 

5K  13K LFW 

690K  1M MegaFace 

134M 

120M 

140M 

- 

 

3D 

MMH [34] 

K3DM [18] 

Kim et al. [28] 

- 

- 

224 × 224 

- - 

- - 

0.7K 123K 

0.46K  4K  FRGCv2 

0.46K  4K  FRGCv2 

0.1K 4.6K Bosphorus 

- 

- 

134M 

3D FR3  160 × 160 100K 3.1M 1.85K 31K LS3DFace 29M 

 



 

 

only 13,540 scans of 888 unique identities and took over 

two years to collect. 

The problem of addressing the dearth of labeled 3D face 

data for training CNNs has been addressed through data 

augmentation. This is either done by creating synthetic 

faces from an existing 3D face model [13, 46] or by manip- 

ulating the facial appearance of existing data by introducing 

expressions [28, 33]. The former method is restricted to the 

linear space of the specific model resulting in faces with 

confined shape variations. The latter method only gener- 

ates more scans per subject without reasing the number 

of unique identities in the data. In this paper, we present a 

technique for data augmentation that introduces non-linear 

heterogeneous variations in 3D shape, facial expressions, 

pose and occlusions to generate a training dataset of 3.1M 

3D scans of 100K unique identities. The closest numbers 

in li ture [28] for f uning VGG-Face on depth images 

are 127K scans of 700 identities, several orders of magni- 

tude lower than ours (See Table 1 for details). 

Another notable challenge to face recognition systems is 

the need for large-scale of test data. Recognition accura- 

cies on small datasets like LFW (99.6% [49]) and FRGCv2 

(98.7% [18]) have already saturated indicating the need for 

larger gallery sizes as it is well known that reasing the 

gallery size degrades the face recognition performance [16]. 

The MegaFace Challenges [27, 40] show that the perfor- 

mance of even the best 2D face recognitio works drop 

significantly when the gallery size reases. The identifi- 

cation accuracy of VG work with triplet loss reduced 

by more than 20% on FaceScrub when only 102 distractors 

were added to the gallery set [40]. Fac  [49] behaved 

similarly when one million distractors were added to the 

gallery [27]. Li ture has no such statistics for 3D face 

recognition as large-scale 3D face recognition has never 

been attempted. Absence of large 3D face datasets with 

huge galleries is the prime reason for this massive gap in 

research. While millions of 2D face datasets have been gen- 

erated by crawling the Inte  [21, 27, 40], 3D  still 

depends on physical collection of data from real subjects. 

We present a unique solution by merging the most chal- 

lenging publicly available 3D face datasets for large-scale 

face recognition testing. Our gallery consists of 1,853 iden- 

tities while the probe set contains 31,860 3D scans of these 

individuals. Through extensive experiments, we show how 

existing methods and CNN models perform on this large 

scale dataset. We use the challenging protocol of a sin- gle 

sample per identity in the gallery as, most often than not, 

this would be the case in practical real world scenarios. Note 

that in the  of 3D face recognition, the largest dataset 

(FRGCv2 [45]) on which results have mostly been reported 

has only 466 identities in the gallery. 

Apart from data, the recognition algorithm itself is a very 

important component. The li ture contains a variety of 

state-of-the-art deep CNN architectures for 2D face recog- 

nition [23, 41, 49, 52]. Usin works trained on 2D im- 

ages to perform 3D face recognition is simplistic and sub- 

optimal as 3D data has its own peculiarities defined by the 

underlying shape and geometry. To the best of our knowl- 

edge, there is no dee work designed specifically for 3D 

face recognition. We cover this research gap and propose a 

Deep 3D Face recognitio work coined FR3  (pro- 

nounced fre ) suited for 3D face data and trained from 

scratch on 3.1M 3D faces. We also yze the affects of in- 

put image sizes and suitability of kernel sizes for 3D faces. 

In a nuts , our contributions are as follows: (1) Train- 

ing Data: We present a method for generating a large corpus 

of labeled 3D face data for training CNNs. Our dataset con- 

tains 3.1M 3D scans of 100K identities highly rich in shape 

variations. Our training data does not lude the public 

datasets. (2) Large-scale Test Data: Owing to the limita- 

tions of physically collecting huge 3D datasets, we merge 

the most challenging existing public 3D face datasets and 

propose a protocol for large-scale face recognition using a 

single sample per identity in the gallery. The test d on- 

tains 31,860 3D scans of 1,853 identities. To the best of our 

knowledge, this is the largest gallery size of 3D faces on 

which face recognition results have ever been reported. 

(3) Deep 3D Face Recognitio work (FR3 ): We 

propose the first ever deep CNN designed specifically for 

3D face recognition and trained on 3.1M 3D faces. We fine 

tune FR3  on the 1,853 gallery identities in our large- 

scale dataset and achieve an end-to-end Rank-1 recognition 

rate of 98.74% on 27K probes, significantly outperforming 

the state-of-the-art on constituent datasets. The trained and 

end-to-end f uned FR3  will be made public. 

2. Related Work 

Face recognition is one of the most researched top- 

ics omputer Vision and many detailed survey - 

ist [10, 43, 51, 60]. Here, we present the most relevant 

works to this paper and divide them into conventional meth- 

ods which use hand crafted local and global features, deep 

learning based methods which are mainly based on various 

CNN architectures and data augmentation methods which 

focus on the problem of limited training data for learning. 

Conventional Methods for 3D Face Recognition: These 

methods can be grouped into local or global descriptor 

based techniques [1, 10] where the lat lso lude 3D 

morphable model based methods. Local descriptor based 

techniques match local 3D point signatures derived from the 

curvatures, shape index and/or normals. For instance, Mian 

et al. [35] proposed a highly repeatable keypoint detection 

algorithm for 3D facial scans. They fused the 3D keypoints 

with 2D Scale Invariant Feature Transform (SIFT) to de- 

velop multimodal face recognition. However, the keypoint 

detection method and features were both sensitive to facial 
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expressions. For robustness to facial expressions, Mi  
al. [34] proposed a parts based multimodal hybrid method 

(MMH) which exploited local and global features in the 2D 

and 3D modalities. A key component of their method was 

a variant of the ICP [5] algorithm which is computation- 

ally expensive due to its i tive nature. Gupta et al. [22] 

matched the 3D Euclidean and geodesic distances between 

pairs of fiducial landmarks to perform 3D face recognition. 

Berretti et al. [4] represented a 3D face with multiple mesh- 

DOG keypoints and local geometric histogram descriptors 

while Drira et al. [14] represented the facial surface by ra- 

dial curves emanating from the nosetip. 

Model based methods construct a 3D morphable face 

model and fit it to each probe face. Face recognition is 

performed by matching the model parameters to those in 

the gallery. Gilani et al. [18] proposed a keypoint based 

dense correspondence model and performed 3D face recog- 

nition by matching the parameters of a statistical morphable 

model called K3DM. Blanz et al. [6, 8] used the parame- 

ters of their 3DMM [7] for face recognition. Passalis et 
al. [42] proposed an Annotated Face Model (AFM) based 

on a age facial 3D mesh. Later, Kakadiaris et al. [25] 

proposed elastic registration using this AFM and performed 

3D face recognition by comparing the wavelet coefficients 

of the deformed images obtained from morphing. Model 

fitting algorithms can be computationally expensive and do 

not perform well on large galleries as shown in our results. 

Both local and global techniques were tested on indi- 

vidual 3D datasets, the largest one being FRGCv2 with a 

gallery size of 466 identities. To the best of our knowledge, 

none of the conventional methods have performed large- 
scale 3D face recognition. 

Deep Learning: Akin to progress in other applications of 

computer vision, deep learning has given a quantum jump 

in 2D face recognition. Three years ago,  AI group 

proposed a nine-layer DeepFace model [54] mainly consist- 

ing of two convolutional, three locally-connected and two 

fully-connected (FC) layers. Th work was trained on 

4.4M 2D facial images of 4,030 identities and achieved an 

accuracy of 97.35% on the ben ark LFW [24] dataset 

which is 27% higher than the previous state of the art. This 

was followed by  ., a year later, with Fac  [49] 

based on eleven convolutional and three FC layers. The dis- 

t tion of thi work was its training dataset of 200M 

face images of 8M identities and a triplet loss function. The 

authors reported face recognition accuracy of 98.87% on 

LFW. DeepFace and Fac  were both trained on pri- vate 

datasets which are not available to the broader research 

community. Consequently, Parkhi et al. [41] proposed a 

method for crawling the web to collect a face database 

of 2.6M 2D images from 2,622 identities and presented the 

VGG-Face model comprising of 16 convolutional and three 

FC layers. Despite training on a smaller dataset, the 

authors reported face recognition accuracy of 98.95% on 

the LFW dataset. However, recently the MegaFace Chal- 

lenges [27, 40] claimed that the existing 2D ben ark 

datasets have reached saturation and proposed adding mil- 

lions of faces to the galleries of these datasets to match the 

real world scenarios. They showed that the face recognition 

accuracy of state-of-the-art 2 works dropped by more 

that 20% when just a few thousand distractors were added 

to the gallery of public face recognition ben ark datasets. 

The take away for the 3D  is that CNNs on 2D data 

perform best when they learn from massive training sets and 

are particularly designed for the 2D modality, and yet, their 

real performance can be validated only when they are tested 

with large gallery sizes. 

To the best of our knowledge, only Kim et al. [28] have 

presented deep 3D face recognition results. They reported 

results on three public datasets after f uning the VGG- 

Fac work [41] on 3D depth images. They used an 

augmented dataset of 123,325 depth images to f he 

VGG-Fac work and then tested it on the Bospho- rus 

[47], BU3DFE [59] and 3D-TEC (twins) [56] datasets 

individually. Except for the Bosphorus dataset, their results 

do not outperform the state-of-the-art conventional meth- 

ods. Moreover, they have not reported results on the chal- 

lenging FRGCv2 dataset and their f uned model is not 

publicly available. 

Data Augmentation: Dou et al. [13] and Richards  al. 
[46] generated thousands of synthetic 3D images for face 

reconstruction using BFM [44], AFM [25] and 3DMM [7]. 

This method generates 3D faces within the linear space of a 

specific statistical face model. The faces generally have 

a variation of ±3 standard deviations from the model mean 

with highly smooth surfaces. Gilani et al. [17] generated 

synthetic images using a similar approach. However, these 

images were used to train a 3D landmark identificatio - 

work. Kim et al. [28] fitted the BFM [44] to 577 identities 

of FRGCv2 [45] database and induced 25 expressions in 

each identity. They also introduced minor pose variations 

between ±10◦ in yaw, pitch and roll for each original scan. 

To simulate occlusions, the authors introduced eight ran- 

dom occlusion patches to each 2D depth map to rease the 

dataset to 123,325 scans. This method only reases the 

intra-  variations without augmenting the number of 

identities, which in this case remained 577. 

3. Proposed Data Generation for Training 

We use 3D facial scans of 1,785 individuals (a propriety 

dataset) to train our dee work. The number of identi- 

ties in this dataset is larger than any 3D dataset but still not 

sufficient for deep learning. Inspired by the recent works of 

Gilani et al. [18], we establish dense correspondence over 

15K 3D vertices on the faces from this dataset, using the 

keypoints based algorithm. The goal now is to grow the 
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We select 90,100 pairs of 3D faces wi th um shape 
N 

difference D(i, j) from the possible = 499, 500 pairs. 2 

S e the 3D faces in each pair are in dense correspondence 
to each other, a new face Fˆ is generated from the linear 

[xp,yp,zp]T +[xp,yp,zp]T ˆ 
=   i  i  i j  j  j   . The space of each pair (i, j) as F 2 

process is depicted in Figure 1. 

It is important to note here that our proposed method is 
significantly different from generating synthetic faces from 
a statistical face model. Varying the parameters of a sta- 
tistical model generates faces that are over smooth and de- 
void of details and high frequency shape variations because 
of the low dimensional space that is used to generate them. 
On the contrary, our synthetic faces are generated from high 
dimensional raw 3D faces. Furthermore, not all faces gener- 
ated by statistical models are faces unless strict constraints 
are imposed on the variation of the model parameters [37]. 
Such constraints will further limit the variations in identities 
that can be generated from the model. Finally, faces gen- 
erated from statistical models span the linear space of the 
model whereas our method introduces non-linearity in the 
generated identities by varying the expressions of the face 

pair used to generate Fˆ. By interpolating between identities 
and expressions, we generate new identities that do not nec- 
essarily lie in the linear space of the original identities. This 
is illustrated in Figure 1. Thus, we can choose the most dis- 
similar faces generating new identities that have um 
inter-  variations. The differences in the two methods of 
face generation can be seen clearly in Figure 2. Note that it 
is guaranteed that our method will never create deformed un-
realistic faces like the ones generated by the statistical 
model (e.g. last two faces of bottom row). 

The second source of 3D faces for our training data is a 
commercial software 1 that generates densely corresponded 
faces of varying facial shapes, ethnicities and expressions. 
We generate 300 identities, each in four different expres- 
sions with three intensity levels and follow the protocol 
above to create 9,950 new identities from the 44,850 possi- 
ble pairs. However, in this case we select the pairs of faces 
that are “similar” and have smaller inter-  distance as 
per definition in Equation 1. The motivation for cing 
this condition comes from real world scenarios where face 
recognition systems are required to recognize people who 
look quite identical, for example in extreme cases, identi- 
cal twins or triplets. A face recognition system trained on 
identities that look similar would have the power to distin- 
guish between probes that are very similar in shape. Note 
that there is still ample inter-  variation in the origi- 
nal pairs for our FR3  to learn high level face identity 
features. 

Finally, we simulate pose variations and large occlusions 
in each 3D scan by deploying 15 synthetic cameras on a 
   

1Singular Inversions, Facegen Modeller,  

Figure 1. (a) Our data generation process. Notice the non-linearity 
introduced in the new face while at the same time preserving the 
high frequency shape variations. (b) Data preparation for input to 
our FR3 . 

Figure 2. Example 3D faces generated by our method (row 1) and 
a statistical model [44] (row 2). The same identities were used 
for generating faces for both techniques. The 3D faces from our 
method look more realistic and have richer shape variations, espe- 
cially around high curvature regions. 

dataset by generating faces from the space spanned by pairs 
of densely corresponding real 3D faces of dist t identi- 
ties. To ensure that the identities in the pair are as “dis- 
t t” as possible, we select the face pair with the um 
non-rigid shape difference. Let the faces be represented by 
Fi = [xp, yp, zp]T , where i = 1, . . . , N , p = 1, . . . , P ; 
N = 1, 000 and P =15,000. The shape differenc ween 
faces Fi and Fj is defined as 

γij + γji 

D(i, j) = , (1) 
2 

where, γij is the amount of bending energy required to de- 
form 3D face Fi to face Fj. Extending the 2D thin- te 
spline model [9] to our case, we calculate the bending en- 
ergy as, γ(i, j) = xT Bx + yT By + zT Bz where x, y and z 
are the vectors containing the x, y and z coordinates of 

P points in face Fj and B is the bending matrix, which is 
  
K 
ST 

 −1 

S 
0 

defined as the P × P upper left matrix of . Here, 

K(a, b) = ||Fa − Fb||2 log||Fa − Fb||, i i i i 

with a, b = 1, . . . , P , S = [1, xj, yj, zj], and 0 is a P × 4 
matrix of zeros. 
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