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We propose and yze an extremely fast, efficient and simple method for solving the problem: 
n 

min{kuk1 : Au = f,u ∈ R }. 

This method was first described in [1], with more details in [2] and rigorous theory given in [3] and [4]. 
The motivation was compressive sensing, which now has a vast and exciting history, which seems to have 
started with Candes, et.al. [5] and Donoho, [6]. See [2], [3] and [4] for a large set of references. Our 
method introduces an improvement called “kicking” of the very efficient method of [1], [2] and also applies 
it to the problem of denoising of undersampled signals. The use of Bregman i tion for denoising of 
images began in [7] and led to improved results for total variation based methods. Here we apply it to 
denoise signals, especially essentially sparse signals, whi ight even be undersampled. 

1 Introduction 

Let A ∈ Rm×n, with n >m and f ∈ Rm, be given. The aim of a basis pursuit problem is to find u ∈ Rn by 

solving the constrained minimization problem: 

min {J (u)|Au = f } (1.1) 
u∈Rn 

where J (u) is a continuous convex function. 

For basis pursuit, we take: 
n X 

J (u) = |u| = |u |. (1.2) 1 j 

j=1 

We assume that AAT is invertible. Thus Au = f is underdetermined and has at least one solution, u = 

AT (AAT )−
1
f , whi inimizes the ℓ2 norm. We also assume that J (u) is coercive, i.e., whenever kuk → 

∞, J (u) → ∞. This implies that the set of all solutions of (1.1) is nonempty and convex. Finally, when J (u) 
is strictly or strongly convex, the solution of (1.1) is unique. 

Basis pursuit arises from many applications. In particular, there has been a recent burst of research 

ompressive sensing, which involves solving (1.1), (1.2). This was led by Candes et.al. [5], Donoho, [6], and 

others, see [2], [3] and [4] for extensive references. Compressive sensing guarantees, under appropriate 

circumstances, that the solution to (1.1), (1.2) gives the sparsest solution satisfying Au = f . The problem 

∗Department of Mathematics, UCLA, Los Angeles, CA 90095 (sjo@math.ucla.edu) This authors research was supported by 
ONR Grant N000140710810, a grant from the Department of Defense and NIH Grant UH54RR021813 

† Department of Mathematics, UCLA, Los Angeles, CA 90095 (ymao29@math.ucla.edu) This authors research was supported 
by NIH Grant UH54RR021813 

‡Department of Mathematics, UCLA, Los Angeles, CA 90095 (bdong@math.ucla.edu) This authors research was supported 
by NIH Grant UH54RR021813 

§Department of Computational and Applied Mathematics, Rice University, Houston, TX 77005 (wotao.yin@rice.edu) This 
authors research was supported by NSF Grant DMS-  and an internal faculty research grant from the Dean of Engineering 
at Rice University 

1 

ar
X

iv
:1

1
0
4

.0
2
6
2
v

1
 

[m
at

h
.O

C
] 

1
 A

p
r 

2
0
1
1
 

 

 



 

 

Stanley Osher, Yu Mao, Bin Dong, Wotao Yin 2 

then becomes one of solving (1.1), (1.2) fast. Conventional linear programming solvers are not tailored for 
the large scale dense matrices A and the sparse solutions u that arise here. To overcome this, a linearized 
Bregman i tive procedure was proposed in [1] and yzed in [2], [3] and [4]. In [2], true, nonlinear 
Bregman i tion was also used quite successfully for this problem. 

Bregman i tion applied to (1.1), (1.2) involves solving the constrained optimization problem through 
solving a small number of unconstrained optimization problems: 

    
1 2 

2 min µ|u| +  kAu − f k (1.3) 1 
2 u 

for µ> 0. 
In [2] we used a method called the fast fixed point continuation solver (FPC) [8] which appears to be 

efficient. Other solvers of (1.3) could be used in this Bregman i tive regularization procedure. 
Here we will improve and yze a linearized Bregman i tive regularization procedure, which, in its 

original arnation, [1], [2], involved only a two line code and simple operations and was already extremely 
fast and accurate. 

In addition, we are interested in the denoising properties of Bregman i tive regularization, for signals, 
not images. The results for images involved the BV norm, which we may discretize for n × n pixel images as: 

n−1 X 
1 

− u )2 +(u 
2 T V (u) = ((u − uij) ) 2 . (1.4) i+1,j ij i,j+1 

i,j=1 

We usually regard the success of the ROF TV based model [9] 

    
λ 2 

min  T V (u) +  kf − uk (1.5) 
2 u 

(we now drop the subscript 2 for the L2 norm throughout the paper) as due to the fact that images have 
edges and in fact are almost piecewise constant (with texture added). Therefore, it is not surprising that 
sparse signals could be denoised using (1.3). The ROF denoising model was greatly improved in [7] and [10] 
with the help of Bregman i tive regularization. We will do the same thing here using Bregman i tion 
with (1.3) to denoise sparse signals, with the added touch of undersampling the noisy signals. 

The paper is organized as follows: In section 2 we describe Bregman i tive algorithms, as well as the 
linearized version. We motivate these methods and describe previously obtained theoretical results. In 
section 3 we introduce an improvement to the linearized version, call “kicking” which greatly speeds up 
the method, especially for solutions u with a large dynamic range. In section 4 we present numerical results, 

luding sparse recovery for u having large dynamic range, and the recovery of signals in large amounts of 
noise. In another work in progress [11] we apply these ideas to denoising very blurry and noisy signals 
remarkably well luding sparse recovery for u. By blurry we mean situations where A is perhaps a 
subsampled discrete convolution matrix whose elements decay to zero with n, e.g. random rows of a discrete 
Gaussian. 

2 Bregman and Linearized Bregman I tive Algorithms 

The Bregman distance [12], based on the convex function J , between points u and v, is defined by 

Dp (u,v) = J (u) − J (v) −hp,u − vi (2.6) J 

where p ∈ ∂J (v) is an element in the subgradient of J at the point v. In general Dp (u,v) 6= Dp (v,u) and the J J 
p triangle inequality is not satisfied, so DJ (u,v) is not a distance in the usual sense. However it does measure 

the closeness between u and v in the sense that Dp (u,v) ≥ 0 and Dp (u,v) ≥ Dp (w,v) for all points w on the J J J 
p p line segment connecting u and v. Moreover, if J is convex, DJ (u,v) ≥ 0, if J is strictly convex DJ (u,v) > 0 

for u 6= v and if J is strongly convex, then there exists a constant a > 0 such that 

Dp (u,v) ≥ aku − vk2. J 
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To solve (1.1) Bregman i tion was proposed in [2] . Given u0 = p0 = 0, we define: 

    
1 k+1 2 k k  k 

u = arg min J (u) − J (u ) −hu − u ,p i+ kAu − f k (2.7) 
2 u∈Rn 

pk+1 = pk − AT (Auk+1 − f ). 

This can be written as   
2

  
1 k 

Dp k+1 k 
(u,u ) + kAu − f k . u = arg min 

u∈R2 
J 2 

It was proven in [2] that if J (u) ∈ C2(Ω) and is strictly convex in Ω, then kAuk − f k decay ponentially 

whenever uk ∈ Ω for all k. Furthermore, when uk converges, its limit is a solution of (1.1). It was also proven 

in [2] that when J (u) = |u|1, i.e. for problem (1.1) and (1.2), or when J is a convex function satisfying some 
additional conditions, the i tion (2.7) leads to a solution of (1.1) in fini y many steps. 

As shown in [2], see also [7], [10], the Bregman i tion (2.7) can be written as: 

fk+1 = fk + f − Auk 
    

1 k+1 k+1 2 
u = arg min J (u) +  kAu − f k (2.8) 

u∈Rn 2 

This was referred to as “adding back the residual” in [7] . Here f 0 = 0,u0 = 0. Thus the Bregman i tion 
uses solutions of the unconstrained problem 

    
1 2 

min J (u) + kAu − f k (2.9) 
2 u∈R 

as a solver in which the Bregman i tion applies this process i tively. 
S e there is generally no explicit expression for the solver of (2.7) or (2.8), we turn to i tive methods. 

The linearized Bregman i tion which we will yze, improve and use here is generated by 

    
  1  k+1 k k  k k T k 2 

u = arg min J (u) − J (u ) −hu − u ,p i+ ku −(u − δA (Au − f ))k 
u∈Rn 2δ 

pk+1 = pk − 
1 

(uk+1 − uk) − AT (Auk − f ). (2.10) 
δ 

In the special case considered here, where J (u) = µkuk1, then we have the two line algorithm 

vk+1 = vk − AT (Auk − f ) 

uk+1 = δ · shrink(vk+1,µ) 

(2.11) 

(2.12) 

where vk is an auxiliary variable 
1 k k k v = p +  u (2.13) 
δ 

and 
 
 x − µ, if x>µ 

if − µ ≤ x ≤ µ 

if x< −µ 

 
shrink(x,µ) := 0, 

x + µ, 

is the soft thresholding algorithm [13] . 
This linearized Bregman i tive algorithm was invented in [1] and used and yzed in [2],[3] and [4]. 

In fact it comes from the inner-outer i tion for (2.7). In [2] it was shown that the linearized Bregman 
i tion (2.10) is just one step of the inner i tion for each outer i tion. Here we repeat the arguments 
also in [2], which begin by summing the second equation in (2.10) arriving at (using the fact that u0 = p0 = 0): 

P 1 1 k−1 k k T j k k k − f ) = p +  u − v = 0, for k = 1,2,.... 
δ 

p +  u + 
δ 

j=0 A (Au 
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This gives us (2.12), and allows us to rewrite its first equation as: 

    
  1  

k+1 k+1 2 u = arg min J (u) + ku − δv k (2.14) 
u∈Rn 2δ 

i.e. we are adding back the “linearized noise”, where vk+1 is defined in (2.11). 
In [2] and [3] some interesting ysis was done for (2.10), (and some for (2.14)). This was done first for 

J (u) continuously differentiable in (2.10) and the gradient ∂J (u) satisfying 

k∂J (u) − ∂J (v)k2 ≤ βh∂J (u) − ∂J (v),u − vi, (2.15) 

∀u,v ∈ Rn, β > 0. In [3] it was shown that, if (2.15) is true, then both of the sequences (uk)k∈N and (pk)k∈N 
2 

T defined by (2.10) converge for 0 <δ < . 
kAA k 

In [4] the authors recently give a theoretical ysis, showing that the i tion in (2.11) and (2.12) 

converges to the unique solution of 

    
  1  2 min µkuk + kuk : Au = f (2.16) 1 

u∈Rn 2δ 

They also show the interesting result: let S be the set of all solutions of the Basis Pursuit problem (1.1), 

(1.2) and let 
u1 = argminkuk2 

u∈S 
(2.17) 

which is unique. Denote the solution of (2.16) as u∗ . Then µ 

lim ku∗ − u1k = 0. (2.18) µ 
µ→∞ 

In passing they show that 

ku∗ k ≤ ku1k for all µ> 0 (2.19) µ 

which we will use below. 

Another theoretical ysis on Linearized Bregm gorithm is given by Yin in [14], where he shows 

that Linearized Bregman i tion is equivalent to gradient descent applied to the dual of the problem (2.16) 

and uses this fact to obtain an elegant convergence proof. 

This summarizes the relevant convergence ysis for our Bregman and linearized Bregman models. 

Next we recall some results from [7] regarding noise and Bregman i tion. 

For any sequence {uk},{pk} satisfying (2.7) for J continuous and convex, we have, for any µ̃ 

k 

Dp 
(ũ ,uk) − DJ pk−1

(ũ,uk−1
) ≤ hAũ − f,Auk−1 − f i−kAuk−1 − f k2

. (2.20) J 

Besides implying that the Bregman distanc ween uk and any element ũ satisfying Aũ = f is mono- 

tonically decreasing, it also implies that, if ũ  is the “noise ” approximation to the solution of (1.1), the 

Bregman distanc ween uk and ũ diminishes as long as 

kAuk − f k > kAũ− f k = σ, where σ is some measure of the noise (2.21) 

i.e., until we get too close to the noisy signal in the sense of (2.21). Note, in [7] we took A to be the identity, 

but these more general results are also proven there. This gives us a stop  criterion for our denoising 

algorithm. 

In [7] we obtained a result for linearized Bregman i tion, following [15], which states that the Bregman 

distanc ween ũ and uk diminish as long as 

kAũ − f k < (1 − 2δkAAT k) kAuk − f k (2.22) 

so we need 0 < 2δkAAT k < 1. 

In practice, we will use (2.21) as our stop  criterion. 
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3 Convergence 

We begin with the following simple results for the linearized Bregman i tion or the equivalent algorithm 

(2.10). 

Theorem 3.1. If uk → u∞, then Au∞ = f. 

Proof. Assume Au∞ 6= f .  Then AT (Au∞ − f ) =6 0 s e has full rank.  This means that for some i, AT 

(AT (Auk − f ))i converges to a nonzero value, whi eans that vk+1 − vk does as well. On the other hand i i 

{vk} = {uk/δ + pk} is bounded s e {uk} converges and pk ∈ [−µ,µ].  Therefore {vk} is bounded, while i 
vk+1 − vk converges to a nonzero limit, which is impossible. i i 

Theorem 3.2. If uk → u∞ and vk → v∞, then u∞ minimizes {J (u) +  
1  kuk2 : Au = f }. 
2δ 

Proof. Let J˜(u) = J (u) +  
1  kuk2

. then 
2δ 

1 ˜ ∂J (u) = ∂J (u) +  u. 
δ 

S e ∂J (uk) = pk = vk − uk/δ, we have ∂J˜(uk) = vk. Using the non-negativity of the Bregman distance we 

obtain 

J˜(uk) ≤ J̃ (uopt) −huopt − uk,∂J˜(uk)i 

= J̃ (uopt) −huopt − uk,vki 

where uopt minimizes (1.1) with J re ced by J˜, which is strictly convex. 
Let k → ∞, we have 

J˜(u∞) ≤ J̃ (uopt) − huopt − u∞,v∞i 
P k−1 k T T j have v∞ ∈ range(AT ). S e Auopt = Au∞ = f , we have huopt − S e v = A A (f − Au ), we j=0 

u∞,v∞i = 0, which implies J˜(u∞) ≤ J̃(uopt). 

u∞ Equation (2.16) (from a result in [3] ) implies that will approach a solution to (1.1), (1.2), as µ 

approaches ∞. 

The linearized Bregman i tion has the following monotonicity property: 

Theorem 3.3. If uk+1 6= uk and 0 <δ < 2/kAAT k, then 

kAuk+1 − f k < kAuk − f k. 

Proof. Let 

uk+1 − uk = ∆uk, vk+1 − vk = ∆vk. 

Then the shrinkage operation is such that 

∆uk = δqk∆vk (3.23) i i i 

with 
 

= 1 if uk+1
uk > 0   i i 

qk 
= 0 if uk+1 = uk = 0 i i i   
∈ (0,1]  otherwise 

Let Qk = Diag (qk). Then (3.23) can be written as i 

∆uk = δQk∆vk = δQkAT (f − Auk) (3.24) 

which implies 

Auk+1 − f = (I − δAQkAT )(Auk − f ). (3.25) 

From (3.23), Qk is diagonal with 0 Qk I, so 0 AQkAT AAT . If we choose δ > 0 such that δAAT ≺ 
2I, then 0 δAQkAT ≺ 2I or −I ≺ I − δAQkAT I which implies that kAuk − f k is not reasing. To get 
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strict decay, we need only show that AQkAT (Auk − f ) = 0 is impossible if uk+1 6= uk. Suppose AQkAT (Auk − 
f ) = 0 holds, then from (3.24) we have: 

h∆uk,∆vki= δhAT (f − Auk),QkAT (f − Auk)i= 0. 

By (3.23), this only happens if uk+1 = uk for all i, which is a contradiction. i i 

We are still faced with estimating how fast the residual decays. It turns out that if consecutive elements 
of u do not change sign, then kAu − f k decay ponentially. By ’exponential’ we mean that the ratio of the 
residuals of two consecutive i tion converges to a constant, this type of convergence is sometimes called 
linear convergence. Here we define 

Su = {x ∈ Rn : sign(xi) = sign(ui),∀i} (3.26) 

(where sign(0) = 0 and sign(a) = a/|a| for a 6= 0). Then we have the following: 

Theorem 3.4. If uk ∈ S ≡ Suk for k ∈ (T1,T2), then uk converges to u∗, where u∗ ∈ argmin{kAu − f k
2 : u ∈ S} 

and kAuk − f k
2 decays to kAu∗ − f k

2 exponentially. 

Proof. . S e uk ∈ S for k ∈ [T1,T2], we can define Q ≡ Qk for T1 ≤ k ≤ T2 − 1. From (3.23) we see that Qk is 
a diagonal matrix consisting of zeros or ones, so Q = QT Q. Moreover, it is easy to see that S = {x|Qx = x}. 

Following the argument in Theorem 3.3 we have: 

uk+1 − uk = ∆uk = δQ∆vk = δQAT (f − Auk) 

Auk+1 − f = [I − δAQAT ](Auk − f ) 

(3.27) 

(3.28) 

and 

−I ≺ I − δAQAT I. 

Let Rn = V0 ⊕ V1, where V0 is the null space of AQAT and V1 is spanned by the eigenvectors corresponding 

to the nonzero eigenvalues of AQAT . Let Auk − f = wk,0 + wk,1, where wk,j ∈ Vj for j = 0,1. From (3.28) we 
have 

wk+1,0 = wk,0 

wk+1,1 = [I − δAQAT ]wk,1 

for T1 ≤ k ≤ T2 − 1. S e wk,1 is not in the null space of AQAT , then (3.27) and (3.28) imply that kwk,1k 
w0 = wk,0, then AQAT w

0 = 0 AQQAT w
0 ⇒ QAT w

0 = 0. Therefore, from (3.27) decay ponentially. Let 
we have 

∆uk = δQT AT (f − Auk) = δQAT (w
0 + wk,1) = δQAT wk,1. 

Thus k∆ukk decay ponentially. This means {uk} forms a Cauchy sequence in S, so it has a limit u∗ ∈ S. 
Moreover 

Au∗ − f = lim(Auk − f ) = limwk,0 +limwk,1 = w
0
. 

k k k 

S e V0 and V1 are orthogonal: 

kAuk − f k
2 = kwk,0k

2 +kwk,1k
2 = kAu∗ − f k

2 +kwk,1k
2
, 

so kAuk − f k
2 −kAu∗ − f k

2 decay ponentially. The only thing left to show is that 

u∗ = argmin(kAu − f k
2 : u ∈ S) = argmin{kAu − f k

2 : Qu = u}. 

This is equivalent to way that AT (Au∗ − f ) is orthogonal with the hyperspace {u : Qu = u}. It’s easy to see 
that s e Q is a projection operator, a vector v is orthogonal with {u : Qu = u} if and only if Qv = 0, thus we 
need to show QAT (Au∗ − f ) = 0. This is obvious because we have shown that Au∗ − f = w

0 and QAT w
0 = 0. 

So we find that u∗ is the desired minimizer. 
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Therefore, instead of decaying exponentially with a global rate, the residual of the linearized Bregman 

i tion decays in a rather sophisticated manner. From the definition of the shrinkage function we can see 

that the sign of an element of u will change if and only if the corresponding element of v crosses the boundary 

of the interval [−µ,µ]. If µ is relatively large compared with the size of ∆v (which is usually the case when 

applying the algorithm to a compressed sensing problem), then at most i tions the signs of the elements 

of u will stay unchanged, i.e. u will stay in the subspace Su defined in (3.26) for a long while. This theorem 

ls us that under this scenario u will quickly converge to the point u∗ that minimizes kAu − f k inside Su, and 

the differenc ween kAu − f k and kAu∗ − f k decay ponentially. After u converges to u∗, u will stay 
there until the sign of some element of u changes. Usually this means that a new nonzero element of u 

comes up. After that, u will en  different subspace S and a new converging procedure begins. 

The phenomenon described above can be observed clearly in Fig 1. The final solution of u contains 

five non-zero es. Each time a new e appears, it converges rapidly to the position that minimizes 

kAu − f k in the subspace Su. After that there is a long stagnation, whi eans u is just waiting there until 

the accumulating v brings out a new non-zero element of u. The larger µ is, the longer the stagnation takes. 

Although the convergence of the residual during each phase is fast, the total speed of the convergence suffers 

much from the stagnation. The solution of this problem will be described in the next section. 
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Figure 1: The left figure presents a simple signal with 5 non-zero es. The right figure shows how the 

linearized Bregman i tion converges. 

4 Fast Implementation 

The i tive formula in Algorithm 1 below gives us the basic linearized Bregm gorithm designed to 

solve (1.1),(1.2). 

Algorithm 1 Bregman I tive Regularization 

Initialize: u = 0, v = 0. 

while “kf − Auk not converge” do 

vk+1 = vk + A⊤(f − Auk) 
uk+1 = δ · shrink(vk+1,µ) 

end while 

This is an extremely concise algorithm, simple to program, involve only matrix multiplication and shrink- 

age. When A consists of rows of a matrix of a fast transform like FFT which is a common case for compressed 

sensing, it is even faster because matrix multiplication can be implemented efficiently using the existing fast 

code of the transform. Also, storage becomes a less serious issue. 
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