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(a) Ours, 15 spp (8.3 s) 

rMSE 0.00199 

(b) LD, 20 spp (8.5 s) 

rMSE 0.01003 

(c) Ours,15 spp (8.3 s) 

rMSE 0.00199 

(d) Reference,16384 spp 

Figure 1: Our adaptive rendering result in the Courtyard scene. Our method with 15 samples per pixel (spp) produces a high-quality 
reconstruction result and drastically reduces a relative mean squared error (rMSE) compared to a straight-forward method utilizing low 
discrepancy (LD) sampling patterns uniformly. 

 1 Introduction 

Monte Carlo (MC) ray tracing [Kajiya 1986] has received exten- 
sive attention for synthesizing realistic rendering results, but gener- 
ally requires a huge number of ray samples (e.g., more than ten 
thousands samples per pixel) until a converged or even visually 
pleasing image is generated. Unfortuna y, its slow convergence 
directly leads to prohibitive rendering time (e.g., hours), which is 
often proportional to the number of ray samples generated. When a 
relatively small number of ray samples (e.g., less than one hundred) 
per pixel are allocated, images are typically corrupted by MC noise, 
i.e., variance. 

Adaptive rendering that adjusts sampling density non-uniformly 
and applies smoothing locally has been actively studied recently, as 
the approach significantly boosts MC ray tracing by reducing the 
required number of ray samples drastically [Hachisuka et al. 2008; 
Overbeck et al. 2009]. These methods can be classified into two cat- 
egories, multi-dimensional and image space adaptive rendering in 
terms of the dimensionality of MC samples [Mo  al. 2014]. The 
multi-dimensional methods [Hachisuka et al. 2008; Lehtin  al. 
2012] allocate samples and reconstruct them in a high dimensional 
space, where each coordinate corresponds to a random parameter 
in the MC integration [Kajiya 1986]. These methods can produce 
a high quality image even with a small number of samples (e.g., 8 
samples per pixel), but managing individual samples unfortuna y 
requires high computational and memory overhead. 

On the other hand, image space methods [Rousselle et al. 2012; Li 
et al. 2012; Mo  al. 2014] utilize per-pixel information (e.g., 
colors, variances, and G-buffers) that can be easily obtained in ren- 
dering, and thus these techniques can be easily applied into existing 
rendering frameworks. The state-of-the-art methods (e.g., [Rous- 
selle et al. 2012; Li et al. 2012; Mo  al. 2014]) have been shown 
to improve the performance of MC ray tracing by an order of mag- 
nitude. Their main target applications, however, are often limited 
to offline rendering frameworks, s e its computational overhead 
is relatively large. For example, the reconstruction times of the pre- 
viuos methods [Rousselle et al. 2012; Li et al. 2012; Mo  al. 
2014] are more than 3 s given the Courtyard scene (Fig. 1) due to 
their expensive reconstructions (e.g., non-local means and local re- 
gression). Especially, the recent local linear approximation [Moon 
et al. 2014] shows a superior reconstruction performance when a 
reference image has a strong linear correlation with given features 
(e.g., textures), but it has very expensive reconstruction time (e.g., 
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We propose a new adaptive rendering algorithm that enhances the 
performance of Monte Carlo ray tracing by reducing the noise, i.e., 
variance, while preserving a variety of high-frequency edges in ren- 
dered images through a novel prediction based reconstruction. To 
achieve our goal, we i tively build multiple, but sparse linear 
models. Each linear model has its prediction window, where the 
linear model predicts the unknown ground truth image that can be 
generated with an infinite number of samples. Our method recur- 
sively estimates prediction errors introduced by linear predictions 
performed with different prediction windows, and selects an opti- 
mal prediction window minimizing the error for each linear model. 
S e each linear model predicts multiple pixels within its optimal 
prediction interval, we can construct our linear models only at a 
sparse set of pixels in the image screen. Predicting multiple pixels 
with a single linear model poses technical challenges, related to de- 
riving error ysis for regions rather than pixels, and has not been 
addressed in the field. We address these technical challenges, and 
our method with robust error ysis leads to a drastically reduced 
reconstruction time even with higher rendering quality, compared 
to state-of-the-art adaptive methods. We have demonstrated that 
our method outperforms previous methods numerically and visu- 
ally with high performance ray tracing kernels such as OptiX and 
Embree. 
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18 s in the scene of Fig. 1), s e it utilizes a complex optimization 
process (least-squares fitting). 

proposed a robust error metric based on the median absolute devia- 
tion. Rousselle et al. [2012] divided input samples into two buffers 
(i.e., dual buffer) and estimated the error introduced by the non- 
local means, and Delbracio et al. [2014] proposed a new similar- 
ity measur ween two patches by using a histogram constructed 
with samples. Li et al. [2012] introduced a general unbiased error 
metric (i.e., Stein’s unbiased risk estimator) to improve reconstruc- 
tion quality of non-linear filtering methods (e.g., cross-bila l fil- 
ter), and the error metric was also utilized to decide how to com- 
b he filter weights computed from an input color buffer and a 
feature buffer (e.g., geometries) in the non-local means filter [Rous- 
selle et al. 2013]. Although these methods employ different error 

ysis and filters, their common behaviour for high-quality fil- 
tering is to apply a filter with estimated optimal parameters, e.g., 
bandwidths, at each pixel. Fortuna y, these methods can be easily 
parallelized thanks to their image-space nature. N heless, these 
approaches become computationally heavy and may take a number 
of seconds, s e they require sophisticated error ysis as well 
a pensive filtering for high-quality or error-guaranteeing results. 
As a result, these methods have not been adopted to recent inter- 
active rendering systems such as Embree [Wald et al. 2014] and 
OptiX [Parker et al. 2010], which use high-performance kernels. 
Computationally efficient filters such as A-trous [Dammertz et al. 
2010] and guided filter [Bauszat et al. 2011] have been developed 
for real-time rendering. The usage of the real-time filters, however, 
has been limited to a preview, s e its filtering quality can be sub- 
optimal due to the lack of robust error ysis. 

Most recently, Mo  al. [2014] approximated image functions 
with linear models locally using features (e.g., G-buffers). In addi- 
tion, they developed an error estimation of a local linear approxi- 
mation by decomposing its reconstruction error into bias and vari- 
ance, and estimated optimal filter bandwidths for different features 
to minimize the error. They demonstrated that the local regression 
framework can produce high-quality rendering results for a variety 
of rendering effects. However this method, like other high-quality 
adaptive techniques, suffers from a high computational overhead, 
s e expensive optimization imating the optimal bandwidths 
is performed at every single pixel. Our method also utilizes a local 
linear approximation using G-buffers, but the key difference is that 
our approach reconstructs multiple pixels simultaneously from a 
single linear model so that expensive error estimation can be per- 
formed only at a sparse number of pixels, resulting in a drastically 
reduced computational overhead. 

To address this problem, we propose a new adaptive rendering 
method, which perform pensive model reconstruction and op- 
timization only at a small number of pixels and predicts filtered values 
in other pixels by using estimated linear models. The key difference 
between our work and the previous methods is that our method 
estimates optimal colors in a region (i.e., multiple pixels) by 
performing a novel linear prediction based reconstruction. Specifi- 
cally, our major technical contributions are summarized as the fol- 
lowing: 

• We construct multiple linear models i tively by using a re- 
cursive least squares. Our method estimates coefficients of 
linear models recursively given prediction windows with dif- 
ferent sizes, where we predict multiple pixels from the linear 
models (Sec. 4.1). 

• We design a recursive error ysis to estimate the predic- tion 
error introduced by our linear prediction, and select an optimal 
prediction size by using the error ysis (Sec. 4.2). 

• We provide an adaptive sampling approach which allocates 
more ray samples on high error regions based on our estimated 
prediction errors (Sec. 5.1). 

We have demonstrated our method with high-performance ray trac- 
ing kernels such as Embree [Wald et al. 2014] and OptiX [Parker 
et al. 2010], and our result shows higher rendering quality compared 
to the state-of-the-art methods [Rousselle et al. 2012; Li et al. 2012; 
Mo  al. 2014] in equal-time comparisons thanks to its accurate 
error ysis and lower computational overhead. Our method uses 
a sophisticated optimization (e.g., least squares fitting), but we dras- 

tically reduce the optimization overhead (e.g., 28× lower than the 

previous method [Mo  al. 2014] in the Fig. 1), by running our 
optimization only at a sparse number of pixels thanks to our predic- 
tion, while preserving its high reconstruction quality. 

2 Previous Work 

Multi-dimensional adaptive rendering. As an early work, Ka- 
jiya [1986] proposed a high-level idea to allocate high-dimensional 
samples in a hierarchical manner and to reconstruct outputs based 
on the samples stored in a tree structure (e.g., kd-trees) by using a 
Riemann sum. In a similar research line, Hachisuka et al. [2008] re- 
fined the idea and demonstrated that this approach significantly re- 
duces the number of samples required for synthesizing a variety of 
rendering effects. Frequency ysis based anisotropic reconstruc- 
tion often focused on simulating specific rendering effects such as 
depth-of-field [Soler et al. 2009], motion blur [Eg  al. 2009], 
soft shadows [Eg  al. 2011b], and ambient occlusions [Eg  
al. 2011a]. Lehtin  al. [2011] presented a new reprojection 
method to reuse samples among multiple pixels in order to reduce 
noise introduced by distributed effects, and Lehtin  al. [2012] 
extended the idea to support indirect illumination. These methods 
demonstrated that high quality reconstruction can be achieved even 
with a small number of samples. These techniques, unfortuna y, 
support a limited set of rendering effects. 

Table 1: Notation used throughout this paper 
Symbol Description 
y 
x 

input image generated by Monte Carlo ray tracing 
feature vector for a pixel, which ludes its pixel po- 
sition and geometries (e.g., normal, texture and depth) 
ground truth image as a function of x 
ground truth gradient of f (x) 
filtering window with a fixed size (e.g., 19 × 19) de- 
fined at center pixel c 
prediction window with a variable size k centered at 
pixel c 

estimated coefficients of a linear model defined within 

f (x) 

∇f (x) 
ΩF 

c 

ΩP (k) c 

β ĉ(k) 
ΩP (k) c 

f̂ (x ) predicted value at a neighboring pixel i within a pre- i 

diction window ΩP (k)  c  Image-space adaptive rendering. Image-space approaches gener- 
ally take per-pixel information (e.g., colors and variances) as an 
input, and then apply well-known image filters such as wavelet 
thresholding [Overbeck et al. 2009] and Gaussian filter [Rousselle 
et al. 2011] to fully utilize rendering-specific information (e.g., vari- 
ances). Recently, sophisticated error estimation has been developed 
for supporting superior filtering methods. Kalantari et al. [2013] 
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3 Reconstruction using Local Linear Models 

The ultimate goal of image reconstruction methods is to restore the 
ground truth image, f (x), from an input image, y, generated by 
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rMSE 0.00044 rMSE 0.00044 rMSE 0.00018 rMSE 0.00166 rMSE 0.00010 

rMSE 0.11328 

(a) Input 32 spp 

rMSE 0.11328 

(b) Insets 

rMSE 0.02260 rMSE 0.00410 rMSE 0.00312 

(h) Our results (c) Dense centers (d) Results with (c) (e) Sparse centers (f) Results with (e)  (g) Our centers (i) References 

Figure 2: Visualization of center pixels and their effects. Given uniformly sampled, i.e., 32 samples per pixel (spp), input images (a) and (b), 
we create our linear models at center pixels. The black dots in the image (c) indicate regularly, but densely selected center pixels with a fixed 
small prediction window. On the other hand, in (e), we choose regularly populated center pixels with a large fixed prediction window. When 
we use the small fixed prediction interval, we can preserve the detailed occlusion and features, but leave a lot of high-frequency noise (d). 
When using the large fixed interval, we can reduce noise well, but remove the high-frequency occlusion and features (f). On the other hand, 
our metho ptively selects the center pixels (g) and shows high-quality reconstruction results with lowest numerical errors. 

MC ray tracing, which is corrupted by MC noise, i.e., variance. 
Throughout the paper, we will use a subscript to represent the value 
of a function at a specific pixel. For example, f (xi) and yi denote 
a ground truth and input pixel value at pixel i, respectively. We 
summarize our notation in Table 1. To design an efficient, yet high- 
quality filtering technique, we propose a novel prediction based re- 

construction method, which estimates the ground truth image f (x) 
based on a sparse number of linear models. 

sults computed by fixed prediction windows (e.g., small and large 
one), and these results show a noisy result or over-smoothed result. It 
motivates us to develop adaptive prediction sizes for high-quality 
reconstruction. 

Technically, the prediction window ΩP (k) corresponds to the inter- c 

val, where we approximate the unknown functions f (xi) by using 
the first-order Taylor polynomial (Eq. 1), and thus the predicted 

value fˆ(xi) varies in terms of the size of the interval (i.e., predic- 

tion size k ≡ |Ωc (k)|). As a result, our first technical challenge is 

to efficiently construct multiple linear models with different k 

values, i.e., different intervals (Sec. 4.1). We then need to esti- mate 

their prediction errors, i.e., ξc(k), depending on the size of 

Let us define a filtering window, ΩF , centered enter pixel, c. P c 

The window is considered as a set luding all the pixels within the 

window. We also define a prediction window, ΩP (k) ⊆ ΩF , which c c 
P 

has k ≡ |Ωc (k)| pixels as its elements. Note that the filtering 
window ΩF has a globally fixed size (e.g., 19 × 19). The prediction k in order to select the optimal size k that minimizes the error. c opt 

window ΩP (k) where we predict the ground truth image f (x) by The second technical challenge is that the optimal prediction size c 

a linear model, however, has variable size k. Within the prediction 
window, we define our linear model by using the first-order Taylor 
polynomial from the center pixel c: 

kopt is still unknown even after computing multiple linear models, 
s e the error ξc(k) depends on the unknown term f (xi). There- 

fore, we should find an estimated error ξˆc(k) and its corresponding 
estimated optimal prediction size kˆopt (Sec. 4.2). To realize our 

f (x ) ≈ f (x ) + ∇f (x )T (x − x ), (1) i c c i c 
high-level idea while tackling these challenges, we propose a novel 
algorithm to estimate the optimal prediction window ΩP (kopt) in where xi denotes a feature vector at pixel i. The ground truth value 

f (xc) and its gradient ∇f (xc) are unknown, but can be estimated 
in the least squares sense, whi inimizes the sum of squared 

residuals between the filtered image fˆ(x) reconstructed by least 

c 

the subsequent section. 

Linear Approximation using geometries. The linear approxima- 

tion based on rendering-specific features x (e.g., data in the G- 
buffer) in Eq. 1 was previously studied for filtering Monte Carlo 
noise [Bauszat et al. 2011; Mo  al. 2014], but the previous 
methods do not fully utilize ∇f (xc) for reconstructing multiple 

squares and input image y. Once the estimated gradient, ∇fˆ(x ), c 

is computed, we utilize it to predict the ground truth function f (xi) 
at i pixels within the prediction window ΩP (k), where i can be the c 

center pixel c and even other pixels, i.e., i =6  c, instead of fitting 
expensive linear models separa y at other pixels within the win- 
dow. Fig. 2 visualizes center pixels c where we build our linear 
models (black dots), and our method linearly predicts all the color 
values of other pixels i from a sparse number of linear models by 
utilizing the Taylor polynomial (Eq. 1). Even with a sparse number 
of linear models, we can appropria y reconstruct high-frequency 
details (e.g., noisy textures in the bottom row), especially when the 
details have a linear correlation with a rendering-specific feature 
(e.g., textures). 

Our high-level idea of reconstructing multiple pixels within a pre- 
diction window by using a single linear model may be consid- ered 
intuitive given Eq. 1. It introduces, however, novel techni- cal 
challenges, s e we should estimate an optimal, local pre- 

pixels of ΩP (k). Our method, however, reconstructs all pixels c 
P 

within the prediction window Ωc from a linear ultane- 
ously, instead of performing a filtering at every pixel. 

4 Linear Model Estimation 

Our optimization goal is to estimate the optimal model defined as a 

linear model (e.g., first-order Taylor polynomial) computed within the 

optimal prediction size kopt, which has a minimal prediction 
error ξc(kopt). The optimization to calculate the prediction size 
kopt can be formulated as follows: 

  
ˆ 

 2 X 1 

k 
f (xi) − f (xi) kopt = argmin ξc(k) = argmin . 

diction window, ΩP (kopt), whi inimizes our prediction error, k k 
P c i∈Ωc (k) P 

(f (x ) − f (x )) . In Fig. 2, we show the re-  ̂ξc(k) = 1 
2 (2) 
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Note that our goal is to minimize the averaged squared difference 
  1 

between predicted values fˆ(x ) and ground truth values f (x ) over i i 
training set in 2nd step 

the pixels defined in the prediction window ΩP (k), s e we n c 

to predict all the pixels i in ΩP (k) from a single linear model. We c validation 
test set in 2nd step propose an i tive estimation process for efficiently computing 

linear models as a function of k in Sec. 4.1 and a recursive error 

ysis for computing kˆopt in Sec. 4.2. 

Ω  2  

  2 
4.1  Recursive Reconstruction of Linear Models 

training set in 3rd step 

Our linear model construction is the process of estimating the co- 
efficients (i.e., intercept and gradient) of a linear function, the first- 
order Taylor polynomial, which correspond to the ground truth 

f (xc) and its gradient ∇f (xc) in Eq. 1, given a prediction size 

(i.e., an interval of the first-order Taylor polynomial). To this 
end, we utilize the least squares problem to compute the opti- 
mal coefficients, whi inimize the sum of squared residuals 

validation 
test set in 3rd step 

Ω  3  

Figure 3: We visualize how our method estimates prediction errors 

of linear models βˆc(k(r)), given r, (the floor integer of) the half of 
the width of the prediction window; r = 2 in the top and r = 3 
in the bottom row. When reasing r of a square window from a 
prior step, we split pixels into two disjoint sets (i.e., training and 
test sets). We then estimate the error of a new r value and its new 

between observed noisy function y and filtered image fˆ(x), i.e., 
P 

(fˆ(x ) − y )2. We def he estimated coefficients as a i∈ΩP (k) i i 
c 

vector βˆc(k) ≡ (fˆ(xc), ∇fˆ(xc)), which is the least squares esti- 
mator for the unknown vector βc(k) ≡ (f (xc), ∇f (xc)). 

Given this least squares problem, we propose a recursive algorithm 

for computing the least squares solution βˆc(k) within a prediction 

size k. To compute multiple linear models, each of which is con- 
structed within a different prediction size k, one can apply the nor- 

prediction window, by testing the prior model βˆ (k(r − 1)) com- c 

puted from its training set  newly luded samples (i.e., the 
test set). This process is recursively performed imating the 
optimal prediction size kopt that minimizes the prediction error. 

mal equation, βˆc(k) = (XT Xk)−1XT Yk, where Xk is k×(d+1) k k 
ance matrix P (k) is also updated by using the weight 1. Techni- design matrix whose i-th row is set as (1, (xi − xc) 

T 
) and d is the c 

cally, the computed linear model βˆc(k) up to k pixels is the least length of the feature vector xi. The design matrix is filled with the 
squares solution, whi inimizes the least squares cost function features from k pixels. ogously, each element in the vector P 

)T 
(fˆ(x ) − y )2. Y  = (y , ..., y is set with the intensities of k different pixels k 1 k 

i∈ΩP (k) i i 
c 

from the Monte Carlo input image y. We consider yi as a 1D value, 

s e we can apply our method to each channel tly for 
color images. 

Note that the equation above is not an approximation of the batch 
solution, i.e., the normal equation, but is a recursive formula that is 
exactly derived based on the matrix inversion lemma (i.e., Wood- 
bury matrix identity) from the batch version [Ljung and So d̈erstro m̈ 
1987]. Its computational complexity for updating the matrix Pc(k) 

Unfortuna y, the normal equation used in least squares based 
methods [Mo  al. 2014] commonly requires a matrix inver- 

sion, i.e., (XT Xk)−1, for each prediction size k. Furthermore, and βˆ (k) with k-th pixel is O(d2), where d is the length of the k c F when we consider |Ωc | candidates, which are computed by adding 
pixels one-by-one from the prediction window to the least-squared 

feature vector xi containing a pixel position, normal, texture, and 

depth. Therefore, the complexity for computing all the linear mod- 
els, each of which is constructed within a different prediction size k, based reconstruction, we need to solve the normal equations |ΩF | c 

times. This is impractical, s e this approach would require a pro- 
hibitive computational cost. Our main idea to avoid the expensive 
matrix inversion is to use the recursive least squares [Ljung and 
So d̈erstro m̈ 1987], which updates the inverse covariance matrix, 

is O(|ΩF |d2). We ex in how to find an estimated optimal model c 

βˆc(kopt) in the next section. 

4.2  Recursive Estimation of Prediction Error ≡ (XT Xk)−1, rementally without performing the ma- Pc(k) k 

trix inversion. 
In this section, we ex in our process of choosing the optimal 

Specifically, we update the inverse covariance matrix Pc(k) and 

the corresponding linear model βˆc(k) by using both xk and yk at 

the k-th pixel from the ones computed using prior k − 1 pixels as 

follows: 

prediction size kˆopt and its corresponding optimal linear model 

β̂  (kˆ ) among possible candidates. Given our recursive recon- c  opt 

struction (Sec. 4.1), we have i tively computed multiple linear 

models βˆc(k) as we grow its prediction size k. To select the opti- 
mal prediction size, we should estimate the prediction error ξc(k) 

introduced when we predict k pixels by the linear model βˆc(k). To 
choose the optimal prediction size in an efficient and robust manner, 
we propose a novel, i tive technique of estimating the prediction 
error ξc(k) as a function of k. 

A few technique ist imating reconstruction errors such as 
Stein’s unbiased risk estimator [Li et al. 2012] and estimated mean 
squared error based on the asymptotic expressions of weighted 
local regression [Mo  al. 2014]. Unfortuna y, these prior 
techniques utilize the general error estimation tools developed in 
   

1The recursive equations have a similar structure to the Kalman filter. 

 Pc(k − 1)zk  
G (k) = , c 

1 + z P (k − 1)z T 
c k k 

Pc(k) = Pc(k − 1) − Gc(k)z
T 

Pc(k − 1), k 
    

βˆc(k) = βˆc(k − 1) + Gc(k) yk − βˆ
T 

(k − 1)zk , (3) 

where zT = (1, (x − x )T ) corresponds to the k-th row in the k c k 

design matrix of the normal equation. The vector Gc(k) can be 
considered as a weight allocated to a new sample pair, xk and yk, 

and the linear model βˆc(k) is updated by considering a weighted a 

priori error (yk − βˆT (k − 1)zk). ogously, the inverse covari- 
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0.01 

statistics for reducing the point error only at the center pixel, i.e., 
0.008 

(fˆ(x )−f (x ))2. As a result, for our optimization goal (Eq. 2), we c c 
0.006 

take a more aggressive approach and attempt to estimate the predic- 
tion error ξc(k) defined in multiple pixels, s e we n to predict 

0.004 

0.002 

values of the k pixels in the prediction window ΩP (k) based on a c 0 

single linear model βˆc(k). (a) Input 32 spp (b) Estimated error 

k(r = 9) 

(c) Reference error 

k(r = 9) 

300 Our high-level idea for addressing both accuracy and efficiency of 
evaluating the prediction error is to fully utilize the recursive least 
squares (Sec. 4.1), where we can naturally predict subsequent sam- 
ples from previous samples. For example, given a linear model 

200 

100 

βˆT (k − t) computed with k − t pixels, we can estimate its predic- (d) Estimated 

prediction size k 

(e) Reference 

prediction size k 
c 0 

tion error in the next t steps as (βˆT (k − t)zi − yi)2 with newly c 

added t samples before updating the linear model with those t sam- 

ples. In this context, let us call the t pixels a test set and k − t pixels 
a training set. Based on this idea, we propose a new i tive vali- 
dation process, which estimates prediction errors by splitting pixels 
into the two disjoint sets. Furthermore, we design it to have a re- 

cursive form for high efficiency when considering k different linear 
models. 

Figure 4: We compare our estimated error and estimated optimal 

prediction size with a reference error and reference prediction size, 
respectively. Given a uniformly sampled input image (a), our es- 
timated error (b) with a prediction size k(r = 9) shows a similar 
pattern compared to its reference (c). Also, our estimated opti- mal 
prediction size (d) has a strong correlation (e.g., 0.87) with the 
ground truth (e). 

Given a (2R + 1) × (2R + 1) square filtering window ΩF , we c 

estimate the prediction error, when k ∈ {12, 32, 52, ..., (2R+1)2}; 
such k values are chosen by reasing half of the width (or height), 
r, of our prediction window, and thus are computed based on a 
function of r. For computational efficiency, we consider only a 
subset of possible prediction size k, which is defined using the half 
of the width (or height), r, instead of taking all positive integers. 
As a result, we parameterize k by k(r) and formulate our i tive 
validation approach into the following recursion: 

and its reference, which cannot be achieved in practice. Our predic- 
tion size shows a similar pattern with its reference and a very high 
correlation (e.g., 0.87). Around the key-spindles of the toasters in 

Fig. 4, our method with 19 × 19 prediction windows has relatively 
high prediction errors. In these regions, we need to use smaller 
prediction windows and allocate more ray samples to achieve high- 
quality results. This is addressed in the next section. 

ξˆacc(k(r)) ξˆacc(k(r − 1)) + ∆ξˆacc(k(r)) 
ξˆc(k(r)) =  c  =  c c  , (4) 5 Linear Model Construction an ptive 

Sampling 
(2r + 1)2 (2r + 1)2 

where ξˆacc(k(r)) is the accumulated prediction error, which needs c 

to be normalized by its pixel count, k(r) ≡ (2r + 1)2. We decom- 
pose the error into two terms, accumulated error from k(0) and to 

In this section, we introduce gorithm to determine positions, 

i.e., center pixels c, of linear models (Sec. 5.1) an ptive sam- 
pling process to guide additional ray samples on high error regions 
of our filtered image (Sec. 5.2). 

k(r − 1), ξˆacc(k(r − 1)), and the newly added error at the current c 

r-th step, ∆ξˆacc(k(r)). c 

Given this recursion, we estimate the newly added error at r-th step 5.1  I tive Construction of Linear Models 
∆ξˆacc(k(r)) introduced when we rease the prediction size from c 

k(r − 1) to k(r), by using the following equation: We present a simple i tive algorithm to find center pixels c, 
where our local linear models (Sec. 3) are created by our recur- 
sive estimation process (Sec. 4). The computational complexity of 

   2 X8r 

∆ξˆacc
(k(r)) = βˆT 

(k(r − 1)) zi − yi , (5) c c 
a linear model estimation is O(|ΩF |d2), and thus our overall com- c i=1 

plexity for reconstructing the values of all pixels is O(L|ΩF |d2), c 

where βˆc (k(r − 1)) is the estimated linear model from k(r − 1) 
samples and these samples are defined as the training set of the 

r-th step in order to test newly luded 8r ≡ k(r) − k(r − 1) 
samples, i.e., the test set of the step. Fig. 3 illustrates how we iter- 
atively split samples into training and test sets. We substitute our 

estimated prediction error ξˆc(k(r)) (Eq. 4) for the unknown error 

ξc(k(r)) (Eq. 2), and then select the optimal prediction size kopt 

where L is the number of linear models, i.e., the number of center 
pixels c. Ideally, L needs to be much smaller than the total pixel 
count of an input image y, while maintaining a high quality recon- 
struction. 

On the first pass, we regularly select center pixels c by using a gran- 
ularity factor g, which is initialized to a large one (e.g., width of 

ˆ 
filtering window ΩF ) along the X and Y directions in the screen c 

and its corresponding linear model βˆ (kˆ ). space; for example, we choose a pixel as the center pixel c, whose 
x and y positions are multiples of the factor g. After we decide the 

center pixels, we estimate an optimal linear model within its opti- mal 

prediction size kopt per each center pixel c, and then predict kopt 

pixels from ea odel. 

In the second pass, we reduce the global granularity factor (e.g., g/2), 

and test the pixels whose positions are multiples of g/2 to see 
whether or not each newly tested pixel is predicted by existing linear 
models constructed in the prior pass. If it is not reconstructed 

c  opt 

In Fig. 4, we compare our estimated error ξˆ (k(r)) with its ref- c 

erence error ξc(k(r)). Also, we visualize our estimated optimal 

prediction size kˆopt by using our estimated error ξˆc(k(r)), with a 
reference prediction size kopt computed from the reference error 
ξc(k(r)). For our visualization purpose, we compare our estima- 
tions with references for all pixels although we run our reconstruc- 
tion on a sparse set of image pixels. We use a reference image 
generated by 8K ray samples per pixel, and then plug the reference 
values into Eq. 2. As a result, the reference optimal size is com- 

puted by minimizing the actual L2 error between predicted images 

by prior prediction, mainly because of small kˆopt values caused 

by drastic illumination changes, we create a new center pixel c on 
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