Discrete Element Method

e Collision detection determines pairs of colliding bodies

e Contact forces computed based on constitutive relation
(spring-damper model)

e Requires small time-steps

e Newton’s Second Law used to compute accelerations

e Numerical integration (e.g., Velocity Verlet) used to compute
velocity, position of all bodies

Discrete Element Method

Particle
Initialization E‘>

Loop

-

Ceare TO Ty

start

=B

Next time step

YY)
Velocity ::.
Collisi Contact Newton’ q
. . . . ANOFEIAOY,
e Spatial Subdivision Lo/t
r.@‘ﬂ‘-ﬁ: W
e 2 particles: r,r o] ™
c by ENAIE@RS ¥H% ==
" s s
rij =r — rj A 08
o
o [f N < d
r..
1
nIJ _ 4
e] . .
e Otherwisé'no collision

Velocity X X)
eloci X]
Collision Contact Newton’s and)

Force

Detection { 2nd | aw Position
D EM Calculation e

e Collision detection code will be provided to you
e Input: Arrays of sphere positions and radii

e Output: Array of collision data

e— 'YX
eloci o0
Collision legrt?:t Newton’s and)
Detection :> :> 2nd | aw :> Position

Calculation Analysis

DEM

e Contact force COITIpOl’lGI’ItS

normal

tangential

e Four different categories:

Continuous potential models
Linear viscoelastic models
Non-linear viscoelastic models

Hysteretic models

Velocity
Collision = Newton’s and
orce

Detection . 2nd | aw Position
D EM Calculation Sl

Contact

i I J mm;
eff — (mi +mj)
Vn, = (Vij - NN
o
e Normal Force Fnij computed as: F = f|-L
j

K, — spring stiffness
v, — damping coefficient

Velocity X X)
eloci X]
Collision Contact Newton’s and)

Force

Detection 4 2 | aw Position
D EM Calculation Sl

e Force on one particle is the sum of its contact forces and gravity:

Fitot =m.g + Z Fnij
J

e Calculation acceleration:

Velocit X X)
elocity { X J
Collision Contact Newton’s and)

Force

Detection { 2nd | aw Position
D EM Calculation Analysis

e Use explicit numerical integration methods like Explicit

Euler or Velocity Verlet Integration

e Explicit Euler:

r(t + At) = r,(t) + v,(t)At

vi(t + At) = v, (t) + a;(H) At

10

Parallelism

e Parallel collision detection (provided)
e (Per-contact): Compute collision forces
e (Per-body): Reduction to resultant force per body

e (Per-body): Solution of Newton’'s Second Law, time
Integration

11

Example :

SN ENS R EEEERENE RN R NN DR R R R W <)
s

. :'-::'EEE::.E:E:E:E:E.:.:.:.:::::::::'.'::::::::;:::::::;:::::_'-::._._.EEE:'.-. .

B e e

*1 million spheres

*0.5 sec long
simulation

e ~12,000 sec
computational
time

GPU

S -:;::::::.:Eé_.ﬁ::'. ._% ”

12

Suggested Code Structure

e Class ParticleSystem
void initializeSim()
void performCD()
void computeForces()
void integrate()
void getGPUdata()
void outputState()

13

void initializeSim()

e Set initial conditions of all bodies
e Copy state data from host to device

void performCD()

e Call GPU CD function (provided) to determine pairs of
colliding spheres

e Returns array of contact_data structs
e data members: objectldA, objectldB 14

vold computeForces|()

e Com
e Com
e Com

with

void

nute contact force for each contact
pute resultant force acting on each body
nute and add reaction force for contact

poundary planes

Integrate()

e Compute acceleration of each body
e Update velocity and position of each body

15

void getGPUdata() E

e Copy state data back to host

void outputState()

e Output sphere positions and radii to a text file

16

main function

int main(int argc, char* argvl[])

{

float t_curr=0.0f;

float t end=1.0f;

float h=0.00005f;

ParticleSystem *psystem = new ParticleSystem(...);
psystem->initializeSim();

while(t_curr<=t_end)

{
psystem->performCD();
psystem->computeForces();
psystem->integrate();
t curr+=h;

}

delete psystem;

return O;

17

Other Tips (Force computation)

1. Compute force for each contact with one
thread per contact

Store key-value array with body ID as key, force
as value

Note each contact should create a force on two
bodies

2. Sort by key (body ID)
thrust::sort_by key(...)

18

Other Tips (Force computation)

3. Sum all forces acting on a single body
thrust::reduce by key(...)

One thread per entry in output, copy to
appropriate place in net force list

4. Add gravity force to each body’s net force
One thread per body

19

Other Tips (Force computation)

5. Contact with planes
Assume Iinfinite planes

A plane is defined by a point (p) and normal
direction (N)
One thread per sphere (at position r)
Compute d = N - (r — p)
Contact if d<radius
Compute force as before, add to net force

20

Parallel Collision Detection

Overview

e Method 1: Brute Force

Easier implementation
O(N?) Complexity

e Method 2: Parallel Binning
More involved
O(N) Complexity

22

Brute Force Approach

e Three Steps:

Run preliminary pass to understand the memory
requirements by figuring out the number of contacts present

Allocate on the device the required amount of memory to
store the desired collision information

Run actual collision detection and populate the data structure
with the information desired

23

Step 1. Search for contacts °

e Create on the device an array of unsigned integers, equal in
Size to the number N of bodies in the system
Call this array dB, initialize all its entries to zero

Array dB to store in entry j the number of contacts that body j will
have with bodies of higher index

If body 5 collides with body 9, no need to say that body 9 collides
with body 5 as well

Do in parallel, one thread per body basis
for body j, loop from k=j+l1 to N
if bodies j and k collide, dB[j] += 1
endloop
endDo

24

Step 1, cont.

Bodyindex ¢ 1 | 2 | 3 | 4 | 5 | 6 | ..

dB

25

Step 2: Parallel Scan Operation :

e Allocate memory space for the collision information

Step 2.1: Define first a structure that might help (this is not the most
efficient approach, but we’ll go along with it...)

struct collisionInfo
{ float3 r,;

float3 ry;

float3 normal;
unsigned int indxA;
unsigned int indxB;

}

Step 2.2: Run a parallel inclusive prefix scan on dB, which gets
overwritten during the process
dB s+2 |00 | 1|41 .| 2 | 2|2 |37]8].|

Step 2.3: Based on the last entry in the dB array, which holds the total
number of contacts, allocate from the host on the device the amount of
memory required to store the desired collision information. To this end
yoUu'll have to use the size of the “struct” collisioninfo. Call this array
dCollisioninfo.

26

Step 3

e Parallel pass on a per body basis (one thread per body — similar

to step 1)

Thread | (associated with body j), computes its number of contacts as

dB[j]-dBJj-1], and sets the variable contactsProcessed=0

Thread j runs a loop for k=j+1 to N

If body j and k are in contact, populate entry

dCollisionInfo[dB[j-1]+contactsProcessed] with this contact’s info and

increment contactsProcesed++

e Note: you can break out of the look after k as soon as

contactsProcese

dBI[j]-dB[j-1]

27

Concluding Remarks, Brute Force °

e Level of effort for discussed approach
Step 1, O(N?) (checking body against the rest of the bodies)

Step 2: prefix scan is O(N)

Step 3, O(N?) (checking body against the rest of the bodies, basically a
repetition of Step 1)

e No use of the atomicAdd, which is a big performance bottleneck

e Numerous versions of this can be contrived to improve the overall
performance

Not discussed here for this brute force idea, rather moving on to a different
approach altogether, called “binning”

28

000
o000

L X R
L X X X
o000
o0 0

29

PLEAB AR SRR TS, AW RSB —FEHNE.
BERREER4A, BiA: https://d. book118. com/81711212510
2006031

https://d.book118.com/817112125102006031
https://d.book118.com/817112125102006031

