

Discrete Element Method

⚫ Collision detection determines pairs of colliding bodies

⚫ Contact s computed based on constitutive relation

(spring-damper model)

⚫ Requires small time-steps

⚫ Newton’s Second Law used to compute accelerations

⚫ Numerical integration (e.g., Velocity Verlet) used to compute

velocity, position of all bodies

3

Velocity
and

Position
ysis

Contact

Calculation

Particle
Initialization

Collision
Detection

Newton’s
2nd Law

Output
Data

4

Velocity
and

Position
ysis

Contact

Calculation

Collision
Detection

Newton’s
2nd Law

⚫

⚫ ri , rj

rj rij ri

d

d

r
ij

rij

ij

⚫

rij

n ij
r ij

⚫

5

Velocity
and

Position
ysis

Contact

Calculation

Collision
Detection

Newton’s
2nd Law

⚫

⚫

⚫

6

Velocity
and

Position
ysis

Contact

Calculation

Collision
Detection

Newton’s
2nd Law

⚫

⚫

⚫

⚫

⚫

⚫

⚫

⚫

7

Velocity
and

Position
ysis

Contact

Calculation

Collision
Detection

Newton’s
2nd Law

vij vi vj mm
i j

m
eff

(m m) i j

vn (vij n
ij
)n

ij ij

Fn ij

d
⚫ F f (k n m v)

nij n ij ij n eff nij ij

kn

n

spring stiffness

dam coefficient

8

Velocity
and

Position
ysis

Contact

Calculation

Collision
Detection

Newton’s
2nd Law

⚫

Ftot m g F i n
ij i

j

⚫

Ftot
tot i

mi

Fi mi ai ai

9

Velocity
and

Position
ysis

Contact

Calculation

Collision
Detection

Newton’s
2nd Law

⚫

⚫

ri (t

vi (t

t) ri (t)

vi (t)

vi (t) t

ai(t) t) t

10

Parallelism

⚫ Parallel collision detection (provided)

⚫ (Per-contact): Compute collision s

⚫ (Per-body): Reduction to resultant per body

⚫ (Per-body): Solution of Newton’s Second Law, time

integration

11

Example

•

•

•

•

12

Suggested Code Structure

⚫ Class ParticleSystem

⚫ void initializeSim()

⚫ void performCD()

⚫ void compute s()

⚫ void integrate()

⚫ void getGPUdata()

⚫ void outputState()

13

void initializeSim()

⚫ Set initial conditions of all bodies

⚫ Copy state data from host to device

void performCD()

⚫ Call GPU CD function (provided) to determine pairs of

colliding spheres

⚫ Returns array of contact_data structs

⚫ data members: objectIdA, objectIdB 14

void compute s()

⚫ Compute contact for each contact

⚫ Compute resultant acting on each body

⚫ Compute and add reaction for contact

with boundary nes

void integrate()

⚫ Compute acceleration of each body

⚫ Update velocity and position of each body

15

void getGPUdata()

⚫ Copy state data back to host

void outputState()

⚫ Output sphere positions and radii to a text file

16

main function

int main(int argc, char* argv[])

{

float t_curr=0.0f;

float t_end=1.0f;

float h=0.00005f;

ParticleSystem *psystem = ne rticleSystem(…);

psystem->initializeSim();

while(t_curr<=t_end)

{

psystem->performCD();

psystem->compute s();

psystem->integrate();

t_curr+=h;

}

delete psystem;

return 0;

}

17

Other Tips (computation)

1. Compute for each contact with one

thread per contact

Store key-value array with body ID as key,

as value

Note each contact should create a on two

bodies

⚫

⚫

2. Sort by key (body ID)

thrust::sort_by_key(…) ⚫

18

Other Tips (computation)

3. Sum all s acting on a single body

thrust::reduce_by_key(…)

hread per entry in output, copy to

appropriate ce i list

⚫

⚫

4. Add gravity to each body’

hread per body ⚫

19

Other Tips (computation)

5. Contact with nes

Assume infinite nes

A ne is defined by a point (p) and normal

direction (N)

hread per sphere (at position r)

⚫

⚫

⚫

Compute d N (r p) ⚫

Contact if d<radius

Compute as before, add t

⚫

⚫

20

Parallel Collision Detection

Overview

⚫ Method 1: Brute
⚫ Easier implementation

⚫ O(N2) Complexity

⚫ Method 2: Parallel Binning
⚫ More involved

⚫ O(N) Complexity

22

Brute Approach

⚫ Three Steps:

⚫ Run preliminary pass to understand the memory

requirements by figuring out the number of contacts present

⚫ Allocate on the device the required amount of memory to

store the desired collision information

⚫ Run actual collision detection and populate the data structure

with the information desired

23

Step 1: Search for contacts

⚫ Create on the device an array of unsigned integers, equal in

size to the number N of bodies in the system

⚫ Call this array dB, initialize all i tries to zero

⚫ Array dB to store in entry j the number of contacts that body j will

have with bodies of higher index

⚫ If body 5 collides with body 9, no need to say that body 9 collides

with body 5 as well

24

n parallel, hread per body basis

for body j, loop from k=j+1 to N

if bodies j and k collide, dB[j] += 1

endloop

endDo

Step 1, cont.

1 2 3 4 5

A 2
4 c

3
Body Index B 5 b

g

7

i
1

f
 dB C d a

8

h
9

e 10 D 6

E

25

 2 0 0 1 4 1 ...

 1 2 3 4 5 6 ...

Step 2: Parallel Scan Operation

⚫ Allocate memory space for the collision information

⚫ Step 2.1: Define first a structure that might help (this is not the most
efficient approach, but we’ll go along with it…)

⚫ Step 2.2: Run a parallel lusive prefix scan on dB, which gets
overwritten during the process

dB

⚫ Step 2.3: Based on the last entry in the dB array, which holds the total
number of contacts, allocate from the host on the device the amount of
memory required to store the desired collision information. To this end
you’ll have to use the size of the “struct” collisionInfo. Call this array
dCollisionInfo.

26

2 2 2 3 7 8 ... 2 0 0 1 4 1 ...

struct collisionInfo

{ float3 rA;

float3 rB;

float3 normal;

unsigned int indxA;

unsigned int indxB;

}

Step 3

⚫ Parallel pass on a per body basis (hread per body – similar
to step 1)

⚫ Thread j (associated with body j), computes its number of contacts as
dB[j]-dB[j-1], and sets the variable contactsProcessed=0

⚫ Thread j runs a loop for k=j+1 to N

⚫ If body j and k are ontact, populate entry

dCollisionInfo[dB[j-1]+contactsProcessed] with this contact’s info and
rement contactsProcesed++

⚫ Note: you can break out of the look after k as soon as
contactsProcesed== dB[j]-dB[j-1]

27

Concluding Remarks, Brute

⚫ Level of effort for discussed approach

⚫ Step 1, O(N2) (checking body the rest of the bodies)

⚫ Step 2: prefix scan is O(N)

⚫ Step 3, O(N2) (checking body the rest of the bodies, basically a
repetition of Step 1)

⚫ No use of the atomicAdd, which is a big performance bottleneck

⚫ Numerous versions of this can be contrived to improve the overall
performance

⚫ Not discussed here for this brute idea, rather moving on to a different
approach altogether, called “binning”

28

 Parallel Binning

29

以上内容仅为本文档的试下载部分，为可阅读页数的一半内容。如

要下载或阅读全文，请访问：https://d.book118.com/81711212510

2006031

https://d.book118.com/817112125102006031
https://d.book118.com/817112125102006031

