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 nt–pollinator–robber systems are considered, where the nts and 

pollinators are mutualists, the nts and nectar robbers are in a parasitic relation, and 

the pollinators and nectar robbers consume a common limiting resource with - out 

interfering competition. My aim is to show a mechanism by which pollination– 

mutualism could persist when there exist nectar robbers. Through the dynamics of a 

nt–pollinator–robber model, it is shown that (i) when the nts alone (i.e., without 

pollination–mutualism) cannot provide sufficient resources for the robbers’ survival 

but pollination–mutualism can persist in the nt–pollinator system, the pollination– 

mutualism may lead to invasion of the robbers, while the pollinators will not be driven 

into ext tion by the robbers’ invasion. (ii) When the nts alone cannot support 

the robbers’ survival but persistence of pollination–mutualism in the nt–pollinator 

system is density-dependent, the pollinators and robbers could coexist if the robbers’ 

efficiency in translating the nt–robber in ctions into fitness is intermediate and 

the initial densities of the three species are in an appropriate region. (iii) When the 

nts alone can support the robbers’ survival, the pollinators will not be driven into 

ext tion by the robbers if their efficiency in translating the nt–pollinator inter- 

actions into fitness is relatively larger than that of the robbers. The ysis leads to 

an ex nation for the persistence of pollination–mutualism in the presence of nectar 

robbers in real situations. 
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1 Introduction 

Floral visitors attracted to flowers consist of pollinators and nectar robbers. Pollinators 

provide pollen transport service, while they consume nectar, pollen and other goods. 

Nectar robbers take nectar away through holes bitten in flowers, without providing 

pollination service. The robbers have been found in nature for hundreds of years. In 

1793, Sprengel recorded that bumble bees perforate nectar spurs (Sprengel 1793). In 

1859 and 1876, Darwin found that bumble bees steal nectar lover flowers (Darwin  

1859, 1876). Later researchers have shown that almost all nts, whose flowers are 

tubular or have nectar spurs, have been robbed. Thus, nectar robbing is a widespread 

and costly phenomenon in the growth of flowering nts. The nts may be able  to 

resist nectar robbing through morphological and chemical traits, but many of the traits  

lead to deterrence to both the pollinators and robbers (McCall and Irwin 2006). While 

pollinators are often regarded as mutualists with nts, the nectar robbers are also 

called cheaters due to their adaptation in lowering robbing impact and frequency 

(Wootton 1994; Werner and Peacor 2003). Mutualism theory exhibits that cooperation 

cannot persist when there is no effective deterrence or serious punishment on cheaters. 

However in real situations, the nt–pollinator mutualism persists stably. Hence, an 

interesting question is raised by Irw  al. (2010, page 287, the 8th question) ask- 

ing why the nt–pollinator mutualism can persist when there exist nectar robbers 

(cheaters). 

Dynamic systems theory may provide a way to answer the question. Indeed, there 

has been a growing li ture on the study of nt–pollinator–herbivore systems 

( dman and Waltman ; Liou and Cheng 1988; Waltman 1991; Hsu et al. 

2001; Wang et al. 2011, etc.). Jang (2002) characterized the in ctions between 

nts and pollinators with the Holling II functional response. Based on her model, 

an in ction among herbivores, nts and pollinators is proposed. Strong ysis 

on global dynamics of the three-species model shows that an reasing pollination 

visitation rate due to the presence of herbivores can promote persistence of the sys- 

tem. In a recent study, Oña and La ann (2011) described nt–pollination systems 

by mutualism models with various functional responses. ysis on the model with 

a linear functional response shows interesting thresholds of the ants’ aggressiveness 

level, above which the pollinators will be driven into ext tion. Fishman and Hadany 

(2010) concluded that an ytical expression for population-level nt–pollinator 

in ctions can be approximated by the Beddington–DeAngelis functional response, 

where a n exploita t io n competit ion a mong pollina to rs is conside red a nd the in ct io n s 

between the nts and pollinators are obligate. Qualitative ysis and numerical 

simulations demonstrated that when the pollinators’ efficiency in translating nt– 

pollinator in ctions into fitness is large and the initial population densities of t he 

two species are not too small, the nts and pollinators could persist at a  steady state. 

As far as we know, nt–pollinator–robber systems have not been yzed in detail. 

Thus, formulating models and studying features of these systems is necessary. 

In this paper, we consider biological systems consisting of nts, pollinators and 

nectar robbers, in which the in ctions between the nts and pollinators are 

mutualistic with the Beddington–DeAngelis functional response, and the in ctions 

between the nts and robbers are parasitic with the Holling II functional response. 
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Global dynamics of a nt–pollinator model with the Beddington–DeAngelis 

functional response are demonstrated. Based on the dynamics of a nt–pollina- tor–

robber model, we show that (i) when the nts alone cannot provide sufficient 

resources for the robbers’ survival but pollination–mutualism can persist in the nt– 

pollinator system, the pollination–mutualism promotes reproduction of the nts and 

may lead to invasion of the robbers, while the pollinators will not be driven into ext - 

tion by the robbers’ invasion. (ii) When the nts alone cannot support the robbers’ 

survival but persistence of pollination–mutualism in the nt–pollinator system is 

density-dependent, the pollinators and robbers could coexist if the robbers’ efficiency 

is intermediate and the initial densities of the three species are in an appropriate region. 

Otherwise, if the efficiency is too small, the robbers will go to ext tion while the 

nts and pollinators coexist; if the efficiency is too large and/or the initial densities 

are beyond a certain level, both the pollinators and robbers will go to ext tion while 

the nts approach their carrying capacity. (iii) When the nts alone can support 

the robbers’ survival, the robbers are always persistent in the nt–pollinator–robber 

system. The pollinators will not be driven into ext tion by the robbers if their effi- 

ciency in translating nt–pollinator in ctions into fitness is relatively larger than 

that of the robbers. Otherwise, the pollinators will go ext t. Numerical simulations 

show that when parameters (factors) in the system vary, in ction outcomes of the 

three species could transition among ext tion of the robbers, persistence of the three 

species at a  steady state, persistence of the three species in periodic oscillations, and 

ext tion of the pollinators. The ysis provides an ex nation for the persistence 

of pollinators and nectar robbers in real situations. 

The paper is organized as follows. The nt–pollinator–robber model is charac- 

terized in Sect. 2. Section 3 exhibits dynamics of the subsystems. Section 4 shows 

persistence of the nt–pollinator–robber system. Discussions are in Sect. 5. 

2 A nt–pollinator–robber model 

In this section, we describe the nt–pollinator–robber system we are concerned with 

and show boundedness of solutions of the model. 

S e the nts provide resources for the pollinators and the pollinators supply 

pollination service for the nts, the relationship between them is cooperative. Let x1 

and x2 represent population densities of the nts and pollinators, respectively. Then 

the nt–pollinator in ction can be approximated by the Beddington–DeAngelis 

functional response (Fishman and Hadany 2010) 

αx1x2 . 

1 + αx1 + αβ x2 

Here, the parameter α is the effective equilibrium value for un-depleted nt–pollina- 

tor in ction, which combines traveling and unloading times spent entral ce 

pollinator foraging, with individual-level nt–pollinator in ctions (Fishman and 

Hadany 2010). β denotes the intensity of exploitation competition among pollinators 

(Pianka 1974). 

1 3 

 

 

 



 

 

Author's al copy 

1158 Y. Wang 

Let r1 represent the intrinsic growth rate of the nts and d1 their self- ompatible 

degree. We obtain the equation for the growth of the nts as given by  

    
dx1 

dt  

   ηαx 2  
= x r — d x + 1 1 1 1 

1 + αx1 + αβ x2 

where the parameter η denotes the nts’ efficiency in translating nt–pollinator 

in ctions into fitness (see Beddington 1975; DeAngelis et al. 1975; Fishman and 

Hadany 2010 for details). Let μ denote the corresponding value for the pollinators 

and let r2 be their death rate. Then we obtain the equation for the the growth of the 

pollinators as given by 

    
dx2 

dt  

   μαx 1  
= x − r + . 2 2 

1 + αx1 + αβ x2 

For simplicity, we rewrite the nt–pollinator model as 

    
dx1 

dt  

dx2 

dt  

 a  x 12 2  
= x r — d x + 1 1 1 1 

1 + αx1 + βx2 
(2.1)     

 a  x 21 1  
= x − r + 2 2 

1 + αx1 + βx2 

where a12(=ηα) can be regarded as the nts’ efficiency when α is fixed in our 

discussion, and a21(=μα) is the corresponding value for the pollinators. 
Let x3 represent the popula tion density of the robbers. S e necta r robbers a re pre- 

dators to nts, the nt–robber system can be depicted by the predator–prey model 

with the Holling II functional response 

    
dx1 

dt  

dx3 

dt  

a x 13 3  
= x r — d x − 1 1 1 1 

c + x1 
(2.2)     

a x 31 1  
= x − r + 3 3 

c + x1 

where the parame 13 represents the saturation level in the Holling II functional 

response and c denotes the half-saturation constant, while a31 can be regarded as the 

robber’ efficien cy in tra nsla tin g nt–robb e r in ct ion s into fitness. r3 is the robb e rs ’ 

per-capita death rate. 

S e we assume that there is no interfering competition between the pollinators 

and robbers, the nt–pollinator–robber system can be depicted by 

    
dx1 

dt  

dx2 

dt  

dx3 

dt  

 a  x a x 12 2  13 3  
= x r — d x + − 1 1 1 1 

1 + αx1 + βx2 c + x1 
    

 a  x 21 1  
= x − r + (2.3) 2 2 

1 + αx1 + βx2 
    

a x 31 1  
= x − r + . 3 3 

c + x1 
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