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 The algorithmic approach is especially useful in situa- 

tions where computational budget is limited: gorithm 

can dynamically assign its budget to solving different as- 

pects of the problem, for example, to take shortcuts in or- 

der to spend computation on more promising solutions at 

the expense of less promising ones. We would like to learn 

the algorithm. Unfortuna y, the hard decisions taken in 

most algorithmic approaches are non-differentiable, and 

this means that the structure and parameters of these effi- 

cient algorithms cannot be easily learned from data. 

Rein ment learning (RL) [22] offers a possible solu- 

tion to learning algorithms. We view the algorithm as the 

 of an RL agent, i.e. a description of dynamic sequen- 

tial behaviour. RL provides a framework to learn the pa- 

rameters of such behaviour with the goal of izing an 

expected reward, for example, the accuracy of the algorithm 

output. We apply this  on gorithmic com- 

puter vision method. In particular, we address the problem 

of 6D object pose estimation and use RL to learn the pa- 

rameters of a deep algorithmic pipel o provide the best 

possible accuracy given a limited computational budget. 

Object pose estimation is the task of estimating from an 

image the 3D translation (position) and 3D rotation (orien- 

tation) of a specific object relative to i vironment. This 

task is import  many applications such as robotics and 

augmented reality where the efficient use of a limited com- 

putation budget is an important requirement. A particular 

challenge are small, textureless and partially occluded ob- 

jects in a cluttered environment (see Fig. 1). 

State-of-the-art pose systems such as the system of Krull 

et al. [12] generate a pool of pose hypotheses, then score 

each hypothesis using a pre-trained CNN. The subset of 

high-scoring hypotheses get refined and ultima y the 

highest-scoring hypothesis is returned as the answer. Com- 

putationally the refinement step is the most expensive, and 

there is a trade-off between the number of refinements al- 

lowed and the expected quality of the result. 

Ideally, one would train such state-of-the-art system end- 

to-end in order to learn how to use the optimal number 

State-of-the-art  computer  vision  algorithms  often 

achieve efficiency by making discrete choices about which 

hypotheses to explore next. This allows allocation of 

computational resources to promising candidates, however, 

such decisions are non-differentiable. As a result, these 

algorithms are hard to train in an end-to-end fashion. 

In this work we propose to learn an efficient algorithm 

for the task of 6D object pose estimation. Our system 

optimizes the parameters of an existing state-of-the art pose 

estimation system using rein ment learning, where the 

pose estimation system now becomes the stochastic , 

parametrized by a CNN. Additionally, we present an 

efficient training algorithm that dramatically reduces 

computation time. We show empirically that our learned 

pose estimation procedure makes better use of limited 

resources and improves upon the state-of-the-art on a 

challenging dataset. Our approach enables differentiable 

end-to-end training of complex algorithmic pipelines and 

learns to make optimal 

budget. 

use of a given computational 

1. Introduction 

Many tasks omputer vision involve learning a func- 

tion, usually learning to predict a desired output label given 

an input image. Advances in deep learning have led to huge 

progress in solving such tasks. In particular, convolutional 

neura works (CNNs) work well when trained over large 

training sets using gradient descent methods to minimize 

the expected loss between the predictions and the ground 

truth labels. 

However, important computer vision systems take the 

form of algorithms rather than being a simple differentiable 

function: sliding window search, superpixel partioning, par- 

ticle filters, and classification cascades are examples of al- 

gorithms realizing complex non-continuous functions. 
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tial behaviour. RL provides a framework to learn the pa-
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expected reward, for example, the accuracy of the algorithm

output. We apply this on gorithmic com-

puter vision method. In particular, we address the problem

of 6D object pose estimation and use RL to learn the pa-

rameters of a deep algorithmic pipel o provide the best
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State-of-the-art pose systems such as the system of

Krull et al. [12] generate a pool of pose hypotheses, then

score each hypothesis using a pre-trained CNN. The subset

of high-scoring hypotheses get refined and ultima y the

highest-scoring hypothesis is returned as the answer. Com-

putationally the refinement step is the most expensive, and

there is a trade-off between the number of refinements al-

lowed and the expected quality of the result.

Ideally, one would train such state-of-the-art system end-

to-end in order to learn how to use the optimal number
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of refinements to ize the expected success of pose 

estimation. Unfortuna y, treating the system as a black 

box with parameters to optimize is impossible for two rea- 

sons: (i) each selection process is non-differentiable with 

respect to the scoring function; and (ii) the loss used to de- 

termine whether an estimated pose is correct is also non- 

differentiable. 

We recast pose estimation as an RL problem in order to 

overcome these difficulties. We model the pose infer- ence 

process as an RL agent which we call PoseAgent. 

PoseAgent is granted more flexibility than the original sys- 

tem: it is given a fixed budget of refinement steps, and is 

allowed to manipulate its hypothesis pool by selecting indi- 

vidual poses for refinement, until the budget is spent. In our 

PoseAgent model each decision follows a probability dis- 

tribution over possible actions. This distribution is called 

the  and we can differentiate and optimize this con- 

tinuous  through the stochastic  gradient ap- 

proach [23]. As a result of this stochastic approach the final 

pose estimate becomes a random variable, and each run of 

PoseAgent will produce a slightly different result. 

This  gradient approach is very general and does 

not require differentiability of the used loss function. As a 

consequence we can directly take the gradient with respect 

to the expected loss of interest, i.e. the number of correctly 

estimated poses. Training in  gradient methods can 

be difficu ue to the additional variance of estimated gra- 

dients [7, 23], because the additional randomness leads to a 

bigger variance in the estimated gradients. To overcome 

this problem we propose an efficient training algorithm that 

radically reduces the variance during training compared to 

a na¨ıve technique. 

We compare our approach to the state-of-the-art [12] and 

achieve substantial improvements in accuracy, while using 

the same or smaller average budget of refinement steps com- 

pared to [12]. In summary our contributions are: 

2.1. Pose Estimation 

There is a large variety of approaches for 6D object pose 

estimation. Traditionally, approaches based on sparse fea- 

tures [14, 15] have been successful, but work well only for 

textured objects. Other approaches lude tem te-based 

methods [9, 19], voting schemes [6, 10], and CNN-based 

direct pose regression [8]. 

We focus on the line of work called object coordinate 

regression [3], which provides the basic framework for our 

approach. Object coordinate regression was originally pro- 

posed for human body pose estimation [24] and camera lo- 

calization [20]. In [3] a random  provides a dense 

pixel-wise prediction for 6D object pose prediction. At each 

pixel,  predicts whether and where the pixel is lo- 

cated on the surface of the object. One can then efficiently 

generate pose hypotheses by sampling a small set of pixels 

and combining  predictions with depth informa- 

tion from an RGB-D camera. 

The object coordinate regression methods in [3, 12, 17] 

score these hypotheses by comparing rendered and ob- 

served image patches. While [3, 17] use a simple pixel wise 

distance function, [12] propose a learned comparison: a 

CNN compares rendered and observed images and out- puts 

an energy value representing a parameter of the pos- terior 

distribution in pose space. Despite their differences in the 

particular scoring functions, [3, 17, 12] use the same 

inference technique to arrive at the final pose estimate: they 

all ref he best hypotheses, re-score them, and output the 

best one as their final choice. Our PoseAgent approach can 

be seen as a generalization of this algorithm, in which the 

agent selects the hypotheses for refinement repeatedly, each 

time being able to make a more informed choice. 

The work of Krull et al. [12] is the most closely related 

to our work. We use a similar CNN construction as Krull 

et al., feeding both rendered and observed image patches 

into to our CNN. However, we use the output of the CNN 

as a parameter of the stochastic  that controls the be- 

haviour of our pose agent. Moreover, while the training 

process in [12] is seen as learning the posterior distribu- 

tion, which is then ized during testing using the fixed 

inference procedure, our training process instead modifies 

the behaviour of nt directly in order to ize the 

number of correctly estimated poses. 

2.2. Rein ment Learning in Similar Tasks 

RL has traditionally been successful in areas like 

robotics [21], control [1], advertising work routing, or 

ying games. While the application of RL seems natu- ral 

for such cases where real agents and environments are 

involved, RL is reasingly being successfully applied in 

computer vision systems where the interpretation of the sys- 

tem as an agent in cting with an environment is not al- 

ways so intuitive. While we are to our knowledge the first 

• To the best of our knowledge, we are the first to apply a 

 gradient approach to the object pose estimation 

problem. 

Our approach allows the use of a non-differentiable re- 

ward function corresponding to the original evaluation 

criterion. 

We present an efficient training algorithm that dramat- 

ically reduces the variance during training. 

We improve significantly upon the best published re- 

sults on the dataset. 

• 

• 

• 

2. Related Work 

Below, we first discuss approaches for 6D pose estima- 

tion, focusing in particular on object coordinate prediction 

methods, and then provide a short review of RL methods 

used in a setting similar to ours. 
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Figure 1. The pose estimation pipeline: a) The input of our system is an RGB-D image. We are interested in the pose of the camera 

highlighted by the green box. b) Similar to [3], the image is processed by a random . c)  outputs dense predictions of object 

probabilities (top) and object coordinates (bottom). The object coordinates are mapped to the RGB cube for visualization. d) We use the 

predictions together with the depth information to sample a pool of pose hypotheses H0. e) An RL agent manipulates the hypotheses pool 

by repeatedly selecting individual hypotheses to refine. This is the focus of this paper. f) nt outputs a final pose estimate H̃ .  

to apply RL for 6D object pose estimation, there are sev- 

eral recent papers that apply RL for 2D object detection and 

recognition [18, 5, 16, 2]. 

In [18, 5], an agent shifts its area of attention over the 

image until it makes a final decision. Instead of moving a 

single 2D area of attention over search space like [18, 5], we 

work with a pool of multiple 6D pose hypotheses. nt 

in [16] focuses its attention by moving a 2D fixation point, 

though operates on a set of precomputed image regions to 

gather information and make a final decision. Our agent in- 

stead manipulates its hypothesis pool by refining individual 

hypotheses. 

Caicedo et al. [5] use Q-learning, in which the CNN pre- 

dicts the quality of the available state-action pairs. Mnih et 

al. [18] and Mathe et al. [16] use a different RL approach 

based on stochastic  gradient, in which the behaviour 

of nt is directly learned to ize an expected 

reward. We follow [18, 5] in using stochastic  gra- 

dient, which allows us to use a non-differentiable reward 

function, directly corresponding to the final success crite- 

rion used during evaluation. 

in space as well as its orientation. The pose has a total of 

six degrees of , three for translation and three for 

rotation. We def he pose as the rigid body transforma- 

tion that maps a point from the local coordinate system of 

the object to the coordinate system of the camera. 

Our method is based on the work of Krull et al. [12]. As 

in [12], we use an intermediate image representation called 

object coordinates. By looking at small patches of the RGB- 

D input image, a random  (Fig. 1b) provides two pre- 

dictions for every pixel i. Each tree predicts an object prob- 

ability pi ∈ [0, 1] as well as a set of object coordinates yi 

(Fig. 1c). The object probability pi describes whether the 

pixel is believed to be part of the object or not. The object 

coordinates yi represent the predicted position of the pixel 

on the surface of the object, i.e. its 3D coordinates in the 

local coordinate system of the object. 

Again following [12], we use these  predictions in 

a RANSAC-inspired sampling scheme to generate pose hy- 

potheses. We repeatedly sample three pixels from the image 

according to the object probabilities pi. By combining the 

predicted object coordinate yi with the camera coordinates 

of the pixels (calculated from the depth channel of the in- 

put image), we obtain three 3D-3D correspondences. We 

calculate a pose hypothesis from these correspondences us- 

ing the Kabsch algorithm [11]. We sample a fixed number 

N of hypotheses, which are combined in hypothesis pool 

3. Method 

In this section, we first def he pose estimation task 

and briefly review the pose estimation pipeline from [3, 12, 

4]. We then continue to describe PoseAgent, our rein - 

ment learning agent, designed to solve the same problem. 

Finally, we discuss how to train our agent, introducing our 

new, efficient training algorithm. 

3.1. Pose Estimation Pipeline 

We begin by describing the object pose estimation task. 

Given an RGB-D image x we are interested in localizing a 

specific, known, rigid object (Fig. 1a). We assume that ex- 

actly one object instance is present in the scene. Our goal is 

to estimate the true pose H∗ of the instance, i.e. its position 

H0 = (H0 . . . H0 ) (Fig. 1d). The upper index denotes 1 N 

time steps which we will use later in our algorithm. 

Krull et al. [12] proposed the following rigid scheme for 

pose optimization. All hypotheses are scored and the 25 

top-scoring hypotheses are refined. Then, the refined hy- 

potheses are scored again, and the best scoring hypothesis 

is returned as the final pose estimate of the algorithm. 

Our paper focuses on improving the process by which 

the correct pose is found, starting from the same initial hy- 

pothesis pool. We propose to use an RL agent (Fig. 1e) to 
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Figure 1. The pose estimation pipeline: a) The input of our system is an RGB-D image. We are interested in the pose of the camera

highlighted by the green box. b) Similar to [3], the image is processed by a random . c) outputs dense predictions of object

probabilities (top) and object coordinates (bottom). The object coordinates are mapped to the RGB cube for visualization. d) We use the

predictions together with the depth information to sample a pool of pose hypotheses H0. e) An RL agent manipulates the hypotheses pool

by repeatedly selecting individual hypotheses to refine. This is the focus of this paper. f) nt outputs a final pose estimate H̃ .
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actly one object instance is present in the scene. Our goal is

to estimate the true pose H∗ of the instance, i.e. its position

in space as well as its orientation. The pose has a total of

six degrees of , three for translation and three for

rotation. We de he pose as the rigid body transforma-

tion that maps a point from the local coordinate system of

the object to the coordinate system of the camera.

Our method is based on the work of Krull et al. [12]. As

in [12], we use an intermediate image representation called

object coordinates. By looking at small patches of the RGB-

D input image, a random (Fig. 1b) provides two pre-

dictions for every pixel i. Each tree predicts an object prob-

ability pi ∈ [0, 1] as well as a set of object coordinates yi

(Fig. 1c). The object probability pi describes whether the

pixel is believed to be part of the object or not. The object

coordinates yi represent the predicted position of the pixel

on the surface of the object, i.e. its 3D coordinates in the

local coordinate system of the object.

Again following [12], we use these predictions in

a RANSAC-inspired sampling scheme to generate pose hy-

potheses. We repeatedly sample three pixels from the image

according to the object probabilities pi. By combining the

predicted object coordinate yi with the camera coordinates

of the pixels (calculated from the depth channel of the in-
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Krull et al. [12] proposed the following rigid scheme for
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top-scoring hypotheses are refined. Then, the refined hy-

potheses are scored again, and the best scoring hypothesis

is returned as the final pose estimate of the algorithm.

Our paper focuses on improving the process by which

the correct pose is found, starting from the same initial hy-

pothesis pool. We propose to use an RL agent (Fig. 1e) to
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dered mask is tested for being an inlier.1 All inlier pixels are 

used to re-calculate the pose with the Kabsch algorithm. We 

repeat this procedure multiple times for the single, chosen 

hypothesis until the number of inlier pixels stops reasing 

or until the number mt of executed refinement step ceeds 

a um mmax. The budget is decreased by the number 
of refinement steps performed, Bt+1 = Bt − mt. nt 

proceeds choosing refinement actions until Bt < mmax, in 

which case further refinement may exceed the total budget 

B
0 of refinement steps. 
When this point has been reached, the refinement phase 

terminates, and nt enters the final decision phase in 

which nt chooses a hypothesis as the final output. 

We denote the final action as a ∈ {1 . . . N } and the final 

Refinement Phase Final Decision Phase 

c) 

a) b) d) e) f) 

Figure 2. The pose agent inference process: a) The initial pool of 

hypotheses is sampled and handed to nt. b) nt se - 

lects a hypotheses Ht
t by sampling from the  π at|St; θ . T 

a 

c) The selected hypothesis is refined. d) If refinement budget is 

left, the refinement phase continues. If the budget i hausted a 
pose estimate as H̃ = . nt receives a reward HT 

aT 

of r = 1 ase the pose is correct or a negative reward of 

r = −1 otherwise. We use the pose correctness criterion 

from [9]. 

In the following, we describe how nt makes its 

decisions. During both, the refinement phase and the final 

decision phase, nt chooses from the hypothesis pool. 

We describe nt behaviour by a probability distribu- 

tion π (at|St; θ) referred to as ” ”. Given the current 

state St, which contains information about the hypothesis 

pool and the input image x, nt selects a hypothe- sis 

by drawing a sample from the . The vector θ of 

learnable parameters consists of CNN weights (described in 

Sec. 3.2.3). We will first give details on the state space St 

before ex ining  π (at|St; θ). 

final selection is m ade. e) Th e final selection is made by sampling 

from the  π aT |ST ; θ . f) The selected pose HT  is output aT 

as final pose estimate. 

dynamically decide which hypothesis to refine next, in order 

to make most efficient use of a given computational budget. 

When its budget i hausted, nt selects a final pose 

estimate (Fig. 1f). 

3.2. PoseAgent 

We now describe our RL agent, PoseAgent, and how 

it performs inference. An overview of the process can be 

found in Fig. 2. nt operates in two phases: (i) the 

refinement phase, in which nt chooses individual hy- 

potheses to undergo the expensive refinement step; and (ii) 

the final decision phase, in which it has to decide which 

pose should be selected as final output. In the following, we 

discuss both phases in detail. 

Inference begins with the refinement phase. The pose 

3.2.1  State Space 

We model our state space in a way that allows us to use our 

new, efficient training algorithm, described in Sec. 3.3.1. 

We assume that the current state St of the hypothesis pool 

decomposes as St = (st , . . . st ), where st will be called 1 N a 
agent starts with a pool H

0 = (H0 . . . H0 ) of hypotheses the state of hypothesis Ht . The state of an hypothesis con- 1 N 

which have been generated as described in Sec. 3.1, and a 

fixed budget B
0
 of possible refinement steps. 

At each time step t, nt chooses one hypothesis 

index at, which we call an action. The chosen hypothe- sis 

is refined and the next time step begins. We limit the 
um number of times nt may choose the same 

hypothesis for refinement to τmax. Hence, over time, the 

pool of actions (resp. hypotheses) nt may choose for 

refinement decreases. We denote the set of possible actions 

a 

tains the original input image x,  prediction z 
for the image, the pose hypothesis Ht , as well as a vec- a 

tor ft of additional context features of the hypothesis (see a 
t t t 

Sec. 3.2.3). In summary, this gives sa = (x, z, Ha, fa). 

3.2.2   

Our agent makes its decisions using a softmax . The 

probability of choosing a particular action at during the re- 

finement phase is given by At 
= {a ∈ {1, . . . , N }|τ t < τmax}, where τ t denotes a a 

how many times hypothesis a has been refined before time 

t. Subsequently, nt modifies the hypothesis pool by exp (E(st t ; θ))     
t  t a 

π a |S ; θ = P , (1) t+1 t 
refining hypothesis H = g(H t ), where g(·) is the re- exp (E(s ; θ)) t 

a t a a∈A t a 

finement function. All other hypotheses remain unchanged 
1A pixel i is tested for being an inlier for pose H by transforming its 

predicted object coordinates yi to camera space using H. If the Euclidean 
distanc ween resulting camera coordinates and the observed coordi- 

nates at the pixel is below a threshold the pixel is considered an inlier. 

Ht+1 = Ht ∀a 6= at. a a 

We perform refinement as follows (see also [12]). We 

render the object in pose Ht
t . Each pixel within the ren- a 
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a) b)

c)

d) e) f)

Refinement Phase Final Decision Phase

Figure 2. The pose agent inference process: a) The initial pool of

hypotheses is sampled and handed to nt. b) nt se-

lects a hypotheses Ht
at by sampling from the π

(

at|St;θ
)

.

c) The selected hypothesis is refined. d) If refinement budget is

left, the refinement phase continues. If the budget i hausted a

final selection is made. e) The final selection is made by sampling

from the π
(

aT |ST ;θ
)

. f) The selected pose HT
aT is output

as final pose estimate.

dynamically decide which hypothesis to refine next, in order

to make most efficient use of a given computational budget.

When its budget i hausted, nt selects a final pose

estimate (Fig. 1f).

3.2. PoseAgent

We now describe our RL agent, PoseAgent, and how

it performs inference. An overview of the process can be

found in Fig. 2. nt operates in two phases: (i) the

refinement phase, in which nt chooses individual hy-

potheses to undergo the expensive refinement step; and (ii)

the final decision phase, in which it has to decide which

pose should be selected as final output. In the following, we

discuss both phases in detail.

Inference begins with the refinement phase. The pose

agent starts with a pool H0 = (H0
1 . . . H

0
N ) of hypotheses

which have been generated as described in Sec. 3.1, and a

fixed budget B0 of possible refinement steps.

At each time step t, nt chooses one hypothesis

index at, which we call an action. The chosen hypothe-

sis is refined and the next time step begins. We limit the

um number of times nt may choose the same

hypothesis for refinement to τmax. Hence, over time, the

pool of actions (resp. hypotheses) nt may choose for

refinement decreases. We denote the set of possible actions

At = {a ∈ {1, . . . , N}|τ ta < τmax}, where τ ta denotes

how many times hypothesis a has been refined before time

t. Subsequently, nt modifies the hypothesis pool by

refining hypothesis Ht+1
at = g(Ht

at), where g(·) is the re-

finement function. All other hypotheses remain unchanged

Ht+1
a = Ht

a ∀a 6= at.

We perform refinement as follows (see also [12]). We

render the object in pose Ht
at . Each pixel within the ren-

dered mask is tested for being an inlier.1 All inlier pixels are

used to re-calculate the pose with the Kabsch algorithm. We

repeat this procedure multiple times for the single, chosen

hypothesis until the number of inlier pixels stops reasing

or until the number mt of executed refinement step ceeds

a um mmax. The budget is decreased by the number

of refinement steps performed, Bt+1 = Bt−mt. nt

proceeds choosing refinement actions until Bt < mmax, in

which case further refinement may exceed the total budget

B0 of refinement steps.

When this point has been reached, the refinement phase

terminates, and nt enters the final decision phase in

which nt chooses a hypothesis as the final output.

We denote the final action as aT ∈ {1 . . . N} and the final

pose estimate as H̃ = HT
aT . nt receives a reward

of r = 1 ase the pose is correct or a negative reward of

r = −1 otherwise. We use the pose correctness criterion

from [9].

In the following, we describe how nt makes its

decisions. During both, the refinement phase and the final

decision phase, nt chooses from the hypothesis pool.

We describe nt behaviour by a probability distribu-

tion π (at|St;θ) referred to as ” ”. Given the current

state St, which contains information about the hypothesis

pool and the input image x, nt selects a hypothe-

sis by drawing a sample from the The vector θ of

learnable parameters consists of CNN weights (described

in Sec. 3.2.3). We will first give details on the state space

St before ex ining π (at|St;θ).

3.2.1 State Space

We model our state space in a way that allows us to use our

new, efficient training algorithm, described in Sec. 3.3.1.

We assume that the current state St of the hypothesis pool

decomposes as St = (st1, . . . s
t
N ), where sta will be called

the state of hypothesis Ht
a. The state of an hypothesis con-

tains the original input image x, prediction z

for the image, the pose hypothesis Ht
a, as well as a vec-

tor f t
a of additional context features of the hypothesis (see

Sec. 3.2.3). In summary, this gives sta = (x, z, Ht
a,f

t
a).

3.2.2

Our agent makes its decisions using a softmax . The

probability of choosing a particular action at during the re-

finement phase is given by

π
(

at|St;θ
)

=
exp (E(stat ;θ))

∑

a∈At exp (E(sta;θ))
, (1)

1A pixel i is tested for being an inlier for pose H by transforming its

predicted object coordinates yi to camera space using H . If the Euclidean

distanc ween resulting camera coordinates and the observed coordi-

nates at the pixel is below a threshold the pixel is considered an inlier.
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to the first fully connected layer, as shown in Fig. 3. Each 

layer, except the last is followed by a tanh operation. 

3.3.  Gradient Training 

We will now discuss the training procedure for our 

PoseAgent. First, we will give a general introduction of 

 gradient training, and then apply the approach to the 

PoseAgent. Finally, we will introduce an efficient al- 

gorithm that greatly reduces variance during training and 

makes training feasible. 

The goal of the training is the ization of the ex- 

pected reward E [r]. Thi pected value depends on the en- 

vironment as well as on the  of our agent. In stochas- 

tic  gradient methods one attempts to approximate the 

gradient with respect to the  parameters θ. Note that 

s e we are dealing with the expected value it becomes 

possible calculate derivatives, even if the reward function 

itself is non differentiable. By making use of the equal- 

b) 
c) 

e) 

a) d) 

Figure 3. The CNN architecture: a) The system takes a pose hy- 

pothesis Ht and the additional features ft encoding the context a a 

and history of the pose as input. b) We use the hypothesis to ren- 

der the object and to cut out patches in the observed images. c) 

The images are processed by multiple convolutional layers. d) We 

concatinate the output of the convolutional layers with the features 

ft . The result is fed into multiple fully-connected layers. e) The a 

 to be used in the re- 
′ t 

finement phase and E (s ) to be used in the final decision. a 

where E(st ; θ) will be called the energy of the state st . a a 
ity  ∂  p(x; θ ) = p(x; θ )  ∂  ln p(x; θ ), we can write the t t 

We will abbreviate it as Ea = E(sa; θ). The energy of a j j j ∂θj ∂θj 

derivative of the expected reward with respect to each pa- 

rameter θj in θ as 
state in the softmax  is a measure of how desirable it 

is for nt to ref he hypothesis. We use the same 

 in the final decision phase, but with a different energy     
∂ 

∂θ 

∂ 
E′(st ; θ) abbreviated by E′t . We use a CNN to predict E [r] = E r ln p(s1:T , a

1:T ; θ) , (2) a a 
∂θ ′t t both energies, Ea and E a. In the next section, we discuss 

the CNN architecture and how it erns the behaviour of 
nt. 

j j 

where p(s
1:T , a

1:T ; θ) is the probability of a particular se- 
s1:T = (s1 . . . sT ) and actions a1:T quence of states = 

(a1 . . . aT ) to occur. 

3.2.3  CNN Architecture Because of the Markov property of the environment, it is 

possible to decompose the probability and rewrite it as 
We give an overview of the CNN architecture used in this 

work in Fig. 3. As in [12], the CNN compares rendered and 

observed images. We use the same six input channels as in 

[12], namely: the rendered depth channel, the observed 

depth channel, a rendered segmentation channel, the ob- 

ject probability channel, a depth mask, and a single channel 

holding the differenc ween object coordinates. 

There are however two major differences in our CNN 

compared to the one used in [12]. Firstly, while Krull et al. 

predi ingle energy value of a pose, we jointly predict 

" 

E [r] =E r 

# 
XT     ∂ 

∂θj 

∂ 
ln π at|St; θ . (3) 

∂θj 
t=0 

Following the REIN  algorithm [25], we approxi- 

mate Eq. 3 using sampled sequences (S1:Tk , a
1:Tk ), gen- k k 

erated by running nt, as described in Sec. 3.2, on 

training images, 

XM XTk 

rk 
    ∂ 

∂θj 
1 
M 

∂ 

∂θj 
E [r] ≈ ln π at |St ; θ two separate energy values: one energy Et for the refine- , (4) k k a 

ment phase and one energy E′t for the final decision phase. k=1 t=0 
a 

Secondly, we input additional features to th work by 

concatenating them to the first fully connected layer. The 

features are: The number of times the hypothesis has al- 

ready been selected for refinement, The distance the hy- 

pothesis has moved during its last refinement and the aver- 

age distance of the hypothesis before refinement to all other 

hypotheses in the original pool. 

Our CNN consists of the following layers: 128 kernels 
of size 6×3×3, 256 kernels of size 128×3×3, a 2×2 max- 

pooling layer, 512 kernels of size 256×3×3, a max-pooling 

operation over the remaining size of the image, finally 3 

where Tk is the number of steps in the sequence and rk is 
the reward achieved in the sequence. 

3.3.1  Efficient Gradient Calculation 

We will now introduce gorithm (Alg. 1), to dramati- 

cally reduce the variance of estimated gradients, by allow- 

ing us to use a higher number of sequences M , in a given 

time. The basic idea is to make use of the special decompos- 

able structure of the state space and our . The advan- 

tage of our algorithm compared to the na¨ıve implementation 

is illustrated in Fig. 4. fully connected layers. The features f t are concatenated a 
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a)

b)
c)

d)

e)

Figure 3. The CNN architecture: a) The system takes a pose hy-

pothesis Ht
a and the additional features f t

a encoding the context

and history of the pose as input. b) We use the hypothesis to ren-

der the object and to cut out patches in the observed images. c)

The images are processed by multiple convolutional layers. d) We

concatinate the output of the convolutional layers with the features

f t
a. The result is fed into multiple fully-connected layers. e) The

network predicts two energy values: E(sta) to be used in the re-

finement phase and E′(sta) to be used in the final decision.

where E(sta;θ) will be called the energy of the state sta.

We will abbreviate it as Et
a = E(sta;θ). The energy of a

state in the softmax is a measure of how desirable it

is for nt to re he hypothesis. We use the same

in the final decision phase, but with a different energy

E′(sta;θ) abbreviated by E′t
a. We use a CNN to predict

both energies, Et
a and E′t

a. In the next section, we discuss

the CNN architecture and how it erns the behaviour of

nt.

3.2.3 CNN Architecture

We give an overview of the CNN architecture used in this

work in Fig. 3. As in [12], the CNN compares rendered and

observed images. We use the same six input channels as

in [12], namely: the rendered depth channel, the observed

depth channel, a rendered segmentation channel, the ob-

ject probability channel, a depth mask, and a single channel

holding the differenc ween object coordinates.

There are however two major differences in our CNN

compared to the one used in [12]. Firstly, while Krull et al.

predi ingle energy value of a pose, we jointly predict

two separate energy values: one energy Et
a for the refine-

ment phase and one energy E′t
a for the final decision phase.

Secondly, we input additional features to th work by

concatenating them to the first fully connected layer. The

features are: The number of times the hypothesis has al-

ready been selected for refinement, The distance the hy-

pothesis has moved during its last refinement and the aver-

age distance of the hypothesis before refinement to all other

hypotheses in the original pool.

Our CNN consists of the following layers: 128 kernels

of size 6×3×3, 256 kernels of size 128×3×3, a 2×2 max-

pooling layer, 512 kernels of size 256×3×3, a max-pooling

operation over the remaining size of the image, finally 3

fully connected layers. The features f t
a are concatenated

to the first fully connected layer, as shown in Fig. 3. Each

layer, except the last is followed by a tanh operation.

3.3. Gradient Training

We will now discuss the training procedure for our

PoseAgent. First, we will give a general introduction of

gradient training, and then apply the approach to

the PoseAgent. Finally, we will introduce an efficient al-

gorithm that greatly reduces variance during training and

makes training feasible.

The goal of the training is the ization of the ex-

pected reward E [r]. Thi pected value depends on the en-

vironment as well as on the of our agent. In stochas-

tic gradient methods one attempts to approximate the

gradient with respect to the parameters θ. Note that

s e we are dealing with the expected value it becomes

possible calculate derivatives, even if the reward function

itself is non differentiable. By making use of the equal-

ity ∂
∂θj

p(x; θj) = p(x; θj)
∂

∂θj
ln p(x; θj), we can write the

derivative of the expected reward with respect to each pa-

rameter θj in θ as

∂

∂θj
E [r] = E

[

r
∂

∂θj
ln p(s1:T , a1:T ;θ)

]

, (2)

where p(s1:T , a1:T ;θ) is the probability of a particular se-

quence of states s1:T = (s1 . . . sT ) and actions a1:T =
(a1 . . . aT ) to occur.

Because of the Markov property of the environment, it is

possible to decompose the probability and rewrite it as

∂

∂θj
E [r] =E

[

r
T
∑

t=0

∂

∂θj
lnπ

(

at|St;θ
)

]

. (3)

Following the REIN algorithm [25], we approxi-

mate Eq. 3 using sampled sequences (S1:Tk

k , a1:Tk

k ), gen-

erated by running nt, as described in Sec. 3.2, on

training images,

∂

∂θj
E [r] ≈

1

M

M
∑

k=1

rk

Tk
∑

t=0

∂

∂θj
lnπ

(

atk|S
t
k;θ

)

, (4)

where Tk is the number of steps in the sequence and rk is

the reward achieved in the sequence.

3.3.1 Efficient Gradient Calculation

We will now introduce gorithm (Alg. 1), to dramati-

cally reduce the variance of estimated gradients, by allow-

ing us to use a higher number of sequences M , in a given

time. The basic idea is to make use of the special decompos-

able structure of the state space and our . The advan-

tage of our algorithm compared to the naı̈ve implementation

is illustrated in Fig. 4.
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H0 
Starting from a hypothesis pool = (H0 . . . H0 ), τmax times and predict the energy values Eτ for all of them 

1 N a 

only a finite number of different hypothesis states using the CNN. 

sτ |a ∈ {1, . . . N }, τ ∈ {0, . . . τmax} can occur during a run Sampling Phase: We sample sequences (s1:T , a
1:T ) as de- a k k 

scribed in Sec. 3.2, using the precomputed energies. We 

observe the reward rk for each sequence. Then, we calcu- 

τ τ τ of our PoseAgent. Here, sa = (Ha , fa ) shall denote the 

state of hypothesis a after it has been refined τ times. 

The algorithm pre-computes all possibly occurring hy- late for each time t, each selected hypothesis at and each k 

possible hypothesis a the derivative  ∂  ln π (at |St ; θ) r pothesis states sτ , and predicts all corresponding energy k a 

values Eτ 2 in advance using the CNN. 
∂Eτ k  k a 

using Eq. 6. We accumulate the results in the corresponding a 

While this comes with some computational expense, it 

allows us to rapidly sample large numbers of sequences 

without having to re-evaluate the energy function. 

To illustrate why this is possible, let us now reconsider 

the calculation of the derivatives in Eq. 4. Using the chain 

rule, we can write them as 

table entries D(a, τ t  ). This corresponds to the inner sums a,k 

in Eq. 7. 

Gradient Update Phase: We once more process each of 
sτ the hypothesis states with the CNN and use standard a 

τ ∂E 
back propagation to calculate . We multiply the results a 

∂θj 

with D(a, τ ) and accumulate them up in another table G 
to obtain the final gradients. This corresponds to the outer 

sums in Eq. 7. 

X     ∂Et  ∂     ∂ 

∂θj 
ln π at|St; θ =  a  ln π at|St; θ , 

∂θj ∂Et a a∈At 

(5) 
Initialization Phase: where 

generate hypothesis pool H0; 

refine each hypothesis τmax times; 
( 

    1 − π (at|St; θ)  if a = at ∂ 

∂Et 

t  t ln π a |S ; θ = . calculate and store Eτ ; 
−π (at|St; θ) else a 

a 
initialize table entries D(a, τ ) ← 0 and G(j) ← 0 

(6) 

We can now rearrange Eq. 4 as sum over possible hypothe- 

sis states 

Sampling Phase: 
for k = 1 : M do 

1:T 1:T τ 
sample path (s , a ) using E  ; k k 

a k k 

receive reward rk; τXmax XN XM XTk ∂Eτ  1     ∂  a  

∂θj M 
1(τ t = τ ) ln π at |St ; θ rk . for t = 1 : Tk, a = 1 : N do     a,k k k ∂Eτ D(a, τ )←D(a, τ ) +  ∂  ln π at |St ; θ r a a,k a,k k τ =0 a=1 k=1 t=1 ∂Eτ k  k 

                                                                                                                      
D(a,τ ) 

a 

end 

end (7) 

Here, 1(τ t = τ ) is the indicator function. It has the value Gradient Update Phase: 
a,k 

1 only when the hypothesis a at time t in sequence k has 
been selected for refinement exactly τa,k = τ times. It has 
the value 0 in any other case. 

Our algorithm works by first calculating the inner sums 

in Eq. 7 and storing the results in the entries D(a, τ ) of a 

table D. We compute these sums with a single i tion over 

all sequences k and all time steps t. The accumulation of 

these values is computationally cheap, because it does not 

not require any rendering or involvement of the CNN. 

This structure allows us to rease the number of sam- 

pled sequences M without much computational cost. The 

algorithm can process an arbitrary amount of sequences us- 

ing only a single back propagation pass of the CNN for each 

for τ = 0 : τmax , a = 1 : N do 
∂Eτ

 
calculate   a via back propagation; t 

∂θj 

for all CNN parameters j do 
∂Eτ

 1 
G(j) ← G(j) +   a   D(a, τ ); ∂θj m 

end 

end 

Output: G(j) ≈  ∂  E [r]; ∂θj 

Algorithm 1: Efficient Gradient Calculation 

4. Experiments 

In the following we will describe the experiments to 

compare our method to the baseline system from [12]. Our 

experiments confirm, that our learned inference procedure 

is able to use its budget in a more efficient way. It outper- 

forms the [12], while using o age a smaller number 

refinement steps. 

Additionally we will describe an experiment regarding 

the efficiency of our training algorithm compared to a na¨ıve 

implementation of the REIN  algorithm. We find, 

that our algorithm can dramatically reduce the gradient vari- 

possible hypothesis state st . In a na¨ıve implementation, a 

the number of required forward-backward passes would in- 

crease linearly with the number of sampled sequences. 

Let us look at the algorithm in detail. It consists of three 

parts: 

Initialization Phase: We generate the original hypothesis 

pool as described in 3.1. Then, we refine all hypotheses 

2 To improve readability, we will not differentiat ween Eτ and E′τ a a 

in this section. 
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Starting from a hypothesis pool H0 = (H0
1 . . . H

0
N ),

only a finite number of different hypothesis states

sτa|a ∈ {1, . . . N}, τ ∈ {0, . . . τmax} can occur during a run

of our PoseAgent. Here, sτa = (Hτ
a ,f

τ
a) shall denote the

state of hypothesis a after it has been refined τ times.

The algorithm pre-computes all possibly occurring hy-

pothesis states sτa, and predicts all corresponding energy

values Eτ
a

2 in advance using the CNN.

While this comes with some computational expense, it

allows us to rapidly sample large numbers of sequences

without having to re-evaluate the energy function.

To illustrate why this is possible, let us now reconsider

the calculation of the derivatives in Eq. 4. Using the chain

rule, we can write them as

∂

∂θj
lnπ

(

at|St;θ
)

=
∑

a∈At

∂Et
a

∂θj

∂

∂Et
a

lnπ
(

at|St;θ
)

,

(5)

where

∂

∂Et
a

lnπ
(

at|St;θ
)

=

{

1− π (at|St;θ) if a = at

−π (at|St;θ) else
.

(6)

We can now rearrange Eq. 4 as sum over possible hypothe-

sis states

τmax
∑

τ=0

N
∑

a=1

∂Eτ
a

∂θj

1

M

M
∑

k=1

Tk
∑

t=1

1(τ ta,k = τ)
∂

∂Eτ
a

lnπ
(

atk|S
t
k;θ

)

rk
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D(a,τ)

.

(7)

Here, 1(τ ta,k = τ) is the indicator function. It has the value

1 only when the hypothesis a at time t in sequence k has

been selected for refinement exactly τ ta,k = τ times. It has

the value 0 in any other case.

Our algorithm works by first calculating the inner sums

in Eq. 7 and storing the results in the entries D(a, τ) of a

table D. We compute these sums with a single i tion

over all sequences k and all time steps t. The accumulation

of these values is computationally cheap, because it does

not not require any rendering or involvement of the CNN.

This structure allows us to rease the number of sam-

pled sequences M without much computational cost. The

algorithm can process an arbitrary amount of sequences us-

ing only a single back propagation pass of the CNN for each

possible hypothesis state sta. In a naı̈ve implementation,

the number of required forward-backward passes would in-

crease linearly with the number of sampled sequences.

Let us look at the algorithm in detail. It consists of three

parts:

Initialization Phase: We generate the original hypothesis

pool as described in 3.1. Then, we refine all hypotheses

2 To improve readability, we will not differentiat ween E
τ
a and E

′τ
a

in this section.

τmax times and predict the energy values Eτ
a for all of them

using the CNN.

Sampling Phase: We sample sequences (s1:Tk , a1:Tk ) as de-

scribed in Sec. 3.2, using the precomputed energies. We

observe the reward rk for each sequence. Then, we calcu-

late for each time t, each selected hypothesis atk and each

possible hypothesis a the derivative ∂
∂Eτ

a
lnπ (atk|S

t
k;θ) rk

using Eq. 6. We accumulate the results in the corresponding

table entries D(a, τ ta,k). This corresponds to the inner sums

in Eq. 7.

Gradient Update Phase: We once more process each of

the hypothesis states sτa with the CNN and use standard

back propagation to calculate
∂Eτ

a

∂θj
. We multiply the results

with D(a, τ) and accumulate them up in another table G
to obtain the final gradients. This corresponds to the outer

sums in Eq. 7.

Initialization Phase:

generate hypothesis pool H0;

refine each hypothesis τmax times;

calculate and store Eτ
a ;

initialize table entries D(a, τ)← 0 and G(j)← 0
Sampling Phase:

for k = 1 : M do

sample path (s
1:Tk

k , a
1:Tk

k ) using Eτ
a ;

receive reward rk;

for t = 1 : Tk, a = 1 : N do

D(a, τa,k)←D(a, τa,k) +
∂

∂Eτ
a
lnπ

(

at
k|S

t
k;θ

)

rk

end

end

Gradient Update Phase:

for τ = 0 : τmax , a = 1 : N do

calculate
∂Eτ

a

∂θj
via back propagation;

for all CNN parameters j do

G(j)← G(j) +
∂Eτ

a

∂θj

1

m
D(a, τ);

end

end

Output: G(j) ≈ ∂
∂θj

E [r];

Algorithm 1: Efficient Gradient Calculation

4. Experiments

In the following we will describe the experiments to

compare our method to the baseline system from [12]. Our

experiments confirm, that our learned inference procedure

is able to use its budget in a more efficient way. It outper-

forms the [12], while using o age a smaller number

refinement steps.

Additionally we will describe an experiment regarding

the efficiency of our training algorithm compared to a naı̈ve

implementation of the REIN algorithm. We find,

that our algorithm can dramatically reduce the gradient vari-
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ance during training. 

We conducted our experiments on the dataset introduced 

in [13]. It features six RGB-D sequences of hand held 

sometimes strongly occluded objects. 

The baseline BestRef directly picks the hypothesis with 

the best E(st ; θ), refines it until the budget i hausted and a 

outputs it as final decision. We used the best performing 

settings when running the baselines: (τmax = 6, mmax = 5) 

for pool size N = 210 and (τmax = 7, mmax = 4) for pool size 

N = 420. 4.1. Training and Validation Procedure 

We train our system on the samurai 1 sequence and, as 

[12] omit the first 400 frames to achieve a higher percentage 

of occluded images. 

We train our system with two different parameter set- 
tings: Using a hypothesis pool size of N = 210, which is 

the setting used in [12], and a larger pool size of N = 420. 

To determ he adequate size of the budget B
0 of re- 

finement steps, we ran the system from [12] on our valida- 

tion set and determined the average number of refinement 

steps it used. We set our budget during training to the re- 

sulting number B
0 = 77. 

During training we allow a hypothesis to be chosen 

τmax = 3 times for refinement. We set the um num- 
ber of refinement steps per i tion to mmax = 10. 

Using stochastic gradient descent, we go through our 

training images in random order and run Algorithm 1 to ap- 
proximate the gradient. We sample M = 50k sequences for 

every image. An additional 50k sequences are used to esti- 
mates the average reward for the image, which is then sub- 

tracted from the reward to further reduce variance [23, 18]. 

We perform a parameter update after every image. Starting 

with an initial learning rate of λ
0 = 25 · 10−4

, we reduce it 

according to λl = λ0
/(1 + lν), with ν = 0.01. We use a 

fixed momentum of 0.9. 

We skip images in which none of the hypotheses from 

4.3. Testing Conditions 

We compared both versions of our model, using N = 210 
and N = 420,  the system of [12] using the cor- 

responding pool size. In all experiments with the baseline 

method [12], we use the identical CNN with the original 

weights trained by Krull et al. in [12] on the samurai 2 se- 

quence. This is th work that [12] reports the best results 

for. 

Apart from the pool size, we used the identical testing 

conditions as in [12], luding the same random  

originally trained in [3]. To classify a pose orrect or 

false we use the same point-distance-based criterion used in 

[12]. A pose is considered correct, when the average dis- 

tanc ween the vertices of the 3D model in the ground 

truth pose and the evaluated pose is below a threshold. 

While the number of refinement steps in our setting is 

restricted, the method of [12] does not provide any guar- 

antees on how many refinement steps are used. To ensure 

a fair comparison, we first ran the method from [12] and 

recorded the average number of refinement steps that it re- 

quired on each test sequence. When running our method, 

we set the budget for each sequence to this recorded value, 

making sure that PoseAgent could never use more refine- 

ment steps than [12]. The total average number of refine- 

ment steps required by both methods can be found Tabs. 1 

and 2. 

We evaluate our method using different parameters for 
τmax and mmax, so that τmax · mmax ≈ 30. Meaning that 

a each pose can have an approximate um of 30 re- 

finement steps. A higher value of τmax (and lower value of 

mmax) means that PoseAgent can make more fine grained 
decisions on where to spend its budget. We use the follow- 
ing combinations for the two values (τmax=3,mmax = 10), 
(τmax = 5, mmax = 6), (τmax = 6, mmax = 5), (τmax = 
7, mmax = 4). 

4.4. Results 

The results of our experiments can be seen in Tabs. 1 and 

2. PoseAgent is able to improve the best published results 

on the dataset by a total of 10.56% (comparing 60.06% from 

Tab. 1 with 70.62% from Tab. 2). When we compare our 

method to [12] working on the same hypothesis pool size 

we are still able to outperform it. With the original pool size 

of N = 210 by 2.12% and the reased pool size of N = 420 
by 2.59%. 

Note, that the budget is set in a way, that i tremely 

the pool lead to a correct pose after being refined τmax 

times, and in whi ore than 10% of the hypotheses from 

the pool lead to a correct pose. Such images contribu it- 

tle, because they are impossibly or to easily solved. 

We run the training procedure for 96 hours on an In  

E5-2450 2.10GHz with Nvidia Tesla K20x G nd save a 

snapshot every 50 training images. To avoid over-fitting, we 

test these saved snapshots on our validation set and choose 

the model with the highest accuracy. In order to reduce the 

computational time during validation, we considered only 

images in which the object was at least 5% occluded3. 

4.2. Additional Baselines 

Two demonstrate the advantage of dynamically distribut- 

ing a given computational budget, we implemented two cut-

down versions of PoseAgent, which serve as additional 

baselines. The baseline method abbreviated as RandRef 

randomly selects a hypothesis to refine at every i tion. 

When the budget i hausted, it chooses the hypothesis 

with the best predicted final selection energy E′(st ; θ). a 

3according to the definition from [12] 
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sulting number B0 = 77.

During training we allow a hypothesis to be chosen

τmax = 3 times for refinement. We set the um num-

ber of refinement steps per i tion to mmax = 10.

Using stochastic gradient descent, we go through our

training images in random order and run Algorithm 1 to ap-

proximate the gradient. We sample M = 50k sequences for

every image. An additional 50k sequences are used to esti-

mates the average reward for the image, which is then sub-

tracted from the reward to further reduce variance [23, 18].

We perform a parameter update after every image. Starting

with an initial learning rate of λ0 = 25 · 10−4, we reduce it

according to λl = λ0/(1 + lν), with ν = 0.01. We use a

fixed momentum of 0.9.

We skip images in which none of the hypotheses from
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times, and in whi ore than 10% of the hypotheses from

the pool lead to a correct pose. Such images contribu it-

tle, because they are impossibly or to easily solved.

We run the training procedure for 96 hours on an In
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snapshot every 50 training images. To avoid over-fitting, we

test these saved snapshots on our validation set and choose

the model with the highest accuracy. In order to reduce the

computational time during validation, we considered only

images in which the object was at least 5% occluded3.

4.2. Additional Baselines

Two demonstrate the advantage of dynamically distribut-

ing a given computational budget, we implemented two

cut-down versions of PoseAgent, which serve as additional

baselines. The baseline method abbreviated as RandRef

randomly selects a hypothesis to refine at every i tion.

When the budget i hausted, it chooses the hypothesis

with the best predicted final selection energy E′(sta;θ).

3according to the definition from [12]

The baseline BestRef directly picks the hypothesis with

the best E(sta;θ), refines it until the budget i hausted and

outputs it as final decision. We used the best performing

settings when running the baselines: (τmax = 6, mmax = 5)

for pool size N = 210 and (τmax = 7, mmax = 4) for pool

size N = 420.

4.3. Testing Conditions

We compared both versions of our model, using N =
210 and N = 420, the system of [12] using the cor-

responding pool size. In all experiments with the baseline

method [12], we use the identical CNN with the original

weights trained by Krull et al. in [12] on the samurai 2 se-

quence. This is th work that [12] reports the best results

for.

Apart from the pool size, we used the identical testing

conditions as in [12], luding the same random

originally trained in [3]. To classify a pose orrect or

false we use the same point-distance-based criterion used in

[12]. A pose is considered correct, when the average dis-

tanc ween the vertices of the 3D model in the ground

truth pose and the evaluated pose is below a threshold.

While the number of refinement steps in our setting is

restricted, the method of [12] does not provide any guar-

antees on how many refinement steps are used. To ensure

a fair comparison, we first ran the method from [12] and

recorded the average number of refinement steps that it re-

quired on each test sequence. When running our method,

we set the budget for each sequence to this recorded value,

making sure that PoseAgent could never use more refine-

ment steps than [12]. The total average number of refine-

ment steps required by both methods can be found Tabs. 1

and 2.

We evaluate our method using different parameters for

τmax and mmax, so that τmax · mmax ≈ 30. Meaning that

a each pose can have an approximate um of 30 re-

finement steps. A higher value of τmax (and lower value of

mmax) means that PoseAgent can make more fine grained

decisions on where to spend its budget. We use the follow-

ing combinations for the two values (τmax=3,mmax = 10),
(τmax = 5,mmax = 6), (τmax = 6,mmax = 5), (τmax =
7,mmax = 4).

4.4. Results

The results of our experiments can be seen in Tabs. 1 and

2. PoseAgent is able to improve the best published results

on the dataset by a total of 10.56% (comparing 60.06%

from Tab. 1 with 70.62% from Tab. 2). When we compare

our method to [12] working on the same hypothesis pool

size we are still able to outperform it. With the original

pool size of N = 210 by 2.12% and the reased pool size

of N = 420 by 2.59%.

Note, that the budget is set in a way, that i tremely
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Figure 4. Observed gradient variance during training as a function 

of time: Our method is able process dramatically more sequences 

with almost no rease omputation time compared to a na¨ıve 

implementation of the REIN  algorithm. The result is a 

drastically reduced gradient variance 

Table 2. Percent correct poses using a hypothesis pool of N = 420 

restrictive, ensuring that PoseAgent can never use more re- 
finement steps than [12] uses o age. 

In both settings (N = 210 and N = 420) there ap- pears 
to be a trend, that an rease of τmax, which cor- responds 
to a more fine grained control of PoseAgent, leads 

to an improvement in accuracy. The only exception here is 

a reduced setting with a hypothesis pool size of N = 21 
for both methods. As can be seen in Fig. 4 our algorithm 

allows us to reduce variance greatly with almost no rease 

omputation time. 

5. Conclusion 

We have demonstrated a method learn the algorithmic in- 

ference procedure in a pose estimation system using a pol- 

icy gradient method. Our system learns to make efficient 

use of a given budget and is able to outperform the origi- 

nal system, while using o age less computational re- 

sources. We have presented an efficient algorithm for the 

gradient approximation during training. The algorithm is 

able to sharply reduce gradient variance, without a signifi- 

c crease omputation time. 

We see multiple interesting future directions of research 

in the context of our system. (i) One could investigate a soft 

version of PoseAgent, which is not working with a fixed 

budget, but can instead decide what is the appropriate time 

to stop. In such systems the used computational budget can 

be part of the reward function. (ii) The sequential structure 

of the current system does not allow simple parallelization, 

but a PoseAgent that learns to nference making use of 

multiple computational cores could be conceived. 

= 7 in the N = 210 setting. It should be noted that τmax 

PoseAgent was trained with a different setting of τmax = 3 
and was able to generalize to the different settings used dur- 

ing testing. 

We measured the average run time of the method (using 

CPU rendering) to b ween 17 (Samurai 2) and 34 (Cat 

2) seconds per image on an In  E5-2450 2.10GHz with 

NVidia Tesla K20x GPU using a hypothesis pool of N 
420. 

= 

4.5. Efficiency of the Training Algorithm 

In order to investigate the efficiency of out training al- 

gorithm compared to a na¨ıve implementation of the REIN- 

 algorithm, we conducted the following experiment: 

We ran our training algorithm as well as the na¨ıve imple- 

mentation up to 100 times on a single training image with- 

out updating th work. 

To estimate the variance of the gradient, we calculated 

the standard deviation of 1000 randomly selected elements 

from the resulting gradient vector of the CNN and averaged 

them. We recorded the required computation time to pro- 

cess the image on an In  E5-2450 2.10GHz with Nvidia 

Tesla K20x GPU. 
The process was repeated for M = 5, M = 50, M = 

500, M = 5000 and M = 50000 sequences ase of the 

efficient algorithm. ase of the na¨ıve implementation we 
used M = 1, M = 2, M = 3 and M = 4 sequences. 
To keep the computation time in reasonable limits we used 
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Avg. ref. steps 71.12 65.00 68.04 68.66 69.39 

 Ours  
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restrictive, ensuring that PoseAgent can never use more re-

finement steps than [12] uses o age.

In both settings (N = 210 and N = 420) there ap-

pears to be a trend, that an rease of τmax, which cor-

responds to a more fine grained control of PoseAgent, leads

to an improvement in accuracy. The only exception here is

τmax = 7 in the N = 210 setting. It should be noted that

PoseAgent was trained with a different setting of τmax = 3
and was able to generalize to the different settings used dur-

ing testing.

We measured the average run time of the method (using

CPU rendering) to b ween 17 (Samurai 2) and 34 (Cat

2) seconds per image on an In E5-2450 2.10GHz with

NVidia Tesla K20x GPU using a hypothesis pool of N =
420.

4.5. Efficiency of the Training Algorithm

In order to investigate the efficiency of out training al-

gorithm compared to a naı̈ve implementation of the REIN-

algorithm, we conducted the following experiment:

We ran our training algorithm as well as the naı̈ve imple-

mentation up to 100 times on a single training image with-

out updating th work.

To estimate the variance of the gradient, we calculated

the standard deviation of 1000 randomly selected elements

from the resulting gradient vector of the CNN and averaged
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cess the image on an In E5-2450 2.10GHz with Nvidia
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Figure 4. Observed gradient variance during training as a function

of time: Our method is able process dramatically more sequences

with almost no rease omputation time compared to a naı̈ve

implementation of the REIN algorithm. The result is a

drastically reduced gradient variance
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allows us to reduce variance greatly with almost no rease

omputation time.
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We have demonstrated a method learn the algorithmic in-

ference procedure in a pose estimation system using a pol-

icy gradient method. Our system learns to make efficient

use of a given budget and is able to outperform the origi-

nal system, while using o age less computational re-

sources. We have presented an efficient algorithm for the

gradient approximation during training. The algorithm is

able to sharply reduce gradient variance, without a signifi-

c crease omputation time.

We see multiple interesting future directions of research

in the context of our system. (i) One could investigate a soft

version of PoseAgent, which is not working with a fixed

budget, but can instead decide what is the appropriate time

to stop. In such systems the used computational budget can

be part of the reward function. (ii) The sequential structure

of the current system does not allow simple parallelization,

but a PoseAgent that learns to nference making use of

multiple computational cores could be conceived.
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