

Group Normalization

Yuxin Wu Kaiming He AI Research (FAIR)
{yuxinwu,kaiminghe}

Batch Normalization (BN) is a t echnique in the

development of deep learning, enabling variou works to
train. However, normalizing along the batch dimension
introduces problems — BN’s error reases rapidly when
the batch size becomes smaller, caused by inaccurate batch
statistics estimation. This limits BN’s usage for training
larger models and transferring features to computer vision
tasks luding detection, segmentation, and , which
require small batches constrained by memory consumption.
In this paper, we present Group Normalization (GN) as
a simple alternative to BN. GN divides the channels into
groups and computes within each group the mean and vari-
ance for normalization. GN’s computation is t
of batch sizes, and its accuracy is stable in a wide range of
batch sizes. On Re -50 trained in Imag , GN has
10.6% lower error than its BN counterpart when using a
batch size of 2; when using typical batch sizes, GN is com-
parably good with BN and outperforms other normaliza-
tion variants. Moreover, GN can be naturally transferred
from pre-training to f uning. GN can outperform its BN-
based counterparts for object detection and segmentation in
COCO,1 and for classification in K ics, showing
that GN can effectively re ce the powerful BN in a variety
of tasks. GN can be easily implemented by a few lines of
code in modern libraries.

36
Batch Norm
Group Norm 34

32

30

28

26

24

22
32 16 8 4 2

batch size (images per worker) Figure 1. Imag classification error vs. batch sizes. This is a Re -50 model trained in the Imag training set using 8 workers (GPUs), evaluated in the validation set. Despite its great success, BN exhibits drawbacks that are also caused by its dist t behavior of normalizing along the batch dimension. In particular, it is required for BN to work with a sufficiently large batch size (e.g., 32 per worker2 [26, 59, 20]). A small batch leads to inaccurate estimation of the batch statistics, and reducing BN’s batch
size reases the model error dramatically (Figure 1). As a result, many recent models [59, 20, 57, 24, 63] are trained with non-trivial batch sizes that are memory-consuming. The heavy reliance on BN’s effectiveness to train models in turn prohibits people from exploring higher-capacity mod- els that would be limited by memory. The restriction on batch sizes is more demanding om- puter vision tasks luding detection [12, 47, 18], segmen- tation [38, 18], recognition [60, 6], and other high- level systems built on them. For example, the Fas nd Mask N frameworks [12, 47, 18] use a batch size of 1 or 2 images because of higher resolution, where BN is “frozen” by transforming to a linear layer [20]; in classification with 3D convolutions [60, 6], the presence of spatial-temporal features introduces a trade-off between the temporal length and batch size. The usage of BN often re- quires these systems to compromis ween the model de- sign and batch sizes.

1. Introduction Batch Normalization (Batch Norm or BN) [26] has been established as a very effective component in deep learning, largely hel push the frontier omputer vision [59, 20] and beyond [54]. BN normalizes the features by the mean and variance computed within a (mini-)batch. This has been shown by many practices to ease optimization and enable very dee works to converge. The stochastic uncertainty of the batch statistics also acts as a regularizer that can ben- efit generalization. BN has been a foundation of many state- of-the-art computer vision algorithms. 2In the context of this paper, we use “batch size” to refer to the number of samples per worker (e.g., GPU). BN’s statistics are computed for each worker, but not broadcast across workers, as is standard in many libraries. / research/Detectron/
blob/master/projects/GN.

1

ar
X

iv
:1

80
3.

08
49

4v
3

[c
s.C

V
]

11
 Ju

n
20

18

er
ro

r (
%

)

This paper presents Group Normalization (GN) as a sim- ple alternative to BN. We notice that many classical features like SIFT [39] and HOG [9] are group-wise features and in- volve group-wise normalization. For example, a HOG vec- tor is the outcome of several spatial cells where each cell is represented by a normalized orientation histogram. o- gously, we propose GN as a layer that divides channels into groups and normalizes the features within each group (Fig- ure 2). GN does not exploit the batch dimension, and its computation is t of batch sizes. GN behaves very stably over a wide range of batch sizes (Figure 1). With a batch size of 2 samples, GN has 10.6% lower error than its BN counterpart for Re -50 [20] in Imag [50]. With a regular batch size, GN is comparably good as BN (with a gap of ∼0.5%) and outperforms other normalization variants [3, 61, 51]. Moreover, although the batch size may change, GN can naturally transfer from pre- training to f uning. GN shows improved results vs. its BN counterpart on Mask N for COCO object detec- tion and segmentation [37], and on 3D convolutiona - works for K ics classification [30]. The effective- ness of GN in Imag , COCO, and K ics demonstrates that GN is a competitive alternative to BN that has been domin these tasks. There have been existing methods, such as Layer Nor- malization (LN) [3] and Instance Normalization (IN) [61] (Figure 2), that also avoid normalizing along the batch di- mension. These methods are effective for training sequen- tial models (RNN/LSTM [49, 22]) or generative models (GANs [15, 27]). But as we will show by experiments, both LN and IN have limited success in visual recognition, for which GN presents better results. Conversely, GN could be used in ce of LN and IN and thus is applicable for se- quential or generative models. This is beyond the focus of this paper, but it is suggestive for future research.
2. Related Work
Normalization. It is well-known that normalizing the in- put data makes training faster [33]. To normalize hidden features, initialization methods [33, 14, 19] have been de- rived based on strong assumptions of feature distributions, which can become invalid when training evolves. Normalization layers in dee works had been widely used before the development of BN. Local Response Nor- malization (LRN) [40, 28, 32] was a component in Ale [32] and following models [64, 53, 58]. Unlike recent meth- ods [26, 3, 61], LRN computes the statistics in a small neighborhood for each pixel. Batch Normalization [26] performs more global normal- ization along the batch dimension (and as importantly, it suggests to do this for all layers). But the concept of “batch” is not always present, or it may change from time to time. For example, batch-wise normalization is not legitimate at

inference time, so the mean and variance are pre-computed from the training set [26], often by running average; conse- quently, there is no normalization performed when testing. The pre-computed statistics may also change when the tar- get data distribution changes [45]. These issues lead to in- consistency at training, transferring, and testing time. In ad- dition, as aforementioned, reducing the batch size can have dramatic impact on the estimated batch statistics. Several normalization methods [3, 61, 51, 2, 46] have been proposed to avoid exploiting the batch dimension. Layer Normalization (LN) [3] operates along the chan- nel dimension, and Instance Normalization (IN) [61] per- forms BN-like computation but only for each sample (Fig- ure 2). Instead of operating on features, Weight Normal- ization (WN) [51] proposes to normalize the filter weights. These methods do not suffer from the issues caused by the batch dimension, but they have not been able to approach BN’s accuracy in many visual recognition tasks. We pro- vide comparisons with these methods ontext of the re- maining sections.
Addressin all batches. Ioffe [25] proposes Batch Renormalization (BR) that alleviates BN’s issue involving small batches. BR introduces two extra parameters that con- strain the estimated mean and variance of BN within a cer- tain range, reducing their drift when the batch size is small. BR has bet ccuracy than BN in the small-batch regime. But BR is also batch-dependent, and when the batch size decreases its accuracy still degrades [25]. There are also attempts to avoid usin all batches. The object detector in [43] performs synchronized BN whose mean and variance are computed across multiple GPUs. However, this method does not solve the problem of small batches; instead, it migrates the algorithm prob- lem to engineering and hardware demands, using a number of GPUs proportional to BN’s requirements. Moreover, the synchronized BN computation prevents using asynchronous solvers (ASGD [10]), a practical solution to large-scale training widely used in industry. These issues can limit the scope of using synchronized BN. Instead of addressing the batch statistics computation (e.g., [25, 43]), our normalization method inherently avoids this computation.
Group-wise computation. Group convolutions have been presented by Ale [32] for distributing a model into two GPUs. The concept of groups as a dimension for model design has been more widely studied recently. The work of ResNeXt [63] investigates the trade-off between depth, width, and groups, and it suggests that a larger number of groups can improve accuracy under similar computational cost. Net [23] and Xception [7] exploit channel-wise (also called “depth-wise”) convolutions, which are group convolutions with a group number equal to the channel

2

Batch Norm Layer Norm Instance Norm Group Norm

C C C C N N N N Figure 2. Normalization methods. Each subplot shows a feature map tensor, with N as the batch axis, C as the channel axis, and (H, W) as the spatial axes. The pixels in blue are normalized by the same mean and variance, computed by aggregating the values of these pixels.
3.1. Formulation We first describe a general formulation of feature nor- malization, and then present GN in this formulation. A fam- ily of feature normalization methods, luding BN, LN, IN, and GN, perform the following computation:

number. Shuffl [65] proposes a channel shuffle oper- ation that permutes the axes of grouped features. These methods all involve dividing the channel dimension into groups. Despite the relation to these methods, GN does not require group convolutions. GN is a generic layer, as we evaluate in standard Re s [20].
1 (1) x̂ i = σ (xi − µi). 3. Group Normalization The channels of visual representations are not entirely t. Classical features of SIFT [39], HOG [9], and GIST [41] are group-wise representations by design, where each group of channels is constructed by some kind of histogram. These features are often processed by group-

wise normalization over each histogram or each orientation. Higher-level features such as VLAD [29] and Fisher Vec- tors (FV) [44] are also group-wise features where a group can be thought of as the sub-vector computed with respect to a cluster. ogously, it is not necessary to think of deep neu- ra work features as unstructured vectors. For example, for conv1 (the first convolutional layer) of work, it is reasonable to expect a fil nd its horizontal flip to exhibit similar distributions of filter responses on natural images. If conv1 happens to approxima y learn this pair of filters, or if the horizontal flip (or other transforma- tions) is made into the architectures by design [11, 8], then the corresponding channels of these filters can be normal- ized together. The higher-level layers are more and their be- haviors are not as intuitive. However, in addition to orien- tations (SIFT [39], HOG [9], or [11, 8]), there are many factors that could lead to grou , e.g., frequency, shapes, illumination, textures. Their coefficients can be interde- pendent. In fact, a well-accepted computational model in neuroscience is to normalize across the cell responses [21, 52, 55, 5], “with various receptive-field centers (cov- ering the visual field) and with various spatiotemporal fre- quency tunings” (p183, [21]); this can happen not only in the primary visual cortex, but also “throughout the visual system” [5]. Motivated by these works, we propose new generic group-wise normalization for deep neura works.

i Here x is the feature computed by a layer, and i is an index. In the case of 2D images, i = (iN , iC, iH, iW) is a 4D vec- tor indexing the features in (N, C, H, W) order, where N is the batch axis, C is the channel axis, and H and W are the spatial height and width axes.
µ and σ in (1) are the mean and standard deviation (std) computed by:

s X X 1 1 (xk − µi)2 + , (2) µi = xk, σi = m
k∈Si

m
k∈Si with as a small constant. S is the set of pixels in which i the mean and std are computed, and m is the size of this set. Many types of feature normalization methods mainly differ in how the set Si is defined (Figure 2), discussed as follows. In Batch Norm [26], the set Si is defined as:

Si = {k | kC = iC}, (3) where iC (and kC) denotes the sub-index of i (and k) along the C axis. This means that the pixels sharing the same channel index are normalized together, i.e., for each chan- nel, BN computes µ and σ along the (N, H, W) axes. In
Layer Norm [3], the set is: (4) Si = {k | kN = iN }, meaning that LN computes µ and σ along the (C, H, W) axes for each sample. In Instance Norm [61], the set is: (5) Si = {k | kN = iN , kC = iC}. meaning that omputes µ and σ along the (H, W) axes for each sample and each channel. The relations among BN, LN, and IN are in Figure 2.

3

H
, W

H
, W

H
, W

H
, W

As in [26], all methods of BN, LN, and IN learn a per- channel linear transform to compensate for the possible lost of representational ability: def GroupNorm(x, g , beta, G, eps=1e−5):
x: input features with shape [N,C,H,W]
g , beta: scale and offset, with shape [1,C,1,1]
G: number of groups for GN

N, C, H, W = x.shape
x = tf.reshape(x, [N, G, C // G, H, W])

mean, var = tf.nn.moments(x, [2, 3, 4], keep dims=True)
x = (x − mean) / tf.sqrt(var + eps)

(6) yi = γx�i + β, where γ and β are trainable scale and shift (indexed by iC in all case, which we omit for simplifying notations).
Group Norm. Formally, a Group Norm layer computes µ and σ in a set Si defined as: x = tf.reshape(x, [N, C, H, W])

 return x ∗ g + beta

 k i C C (7) Figure 3. Python code of Group Norm based on TensorFlow. S = {k | k = i , b c = b c} . i N N C/G C/G Here G is the number of groups, which is a pre-defined hyper-parameter (G = 32 by default). C/G is the num- TensorFlow. In fact, we only need to specify how the mean and variance (“moments”) are computed, along the appro- priate axes as defined by the normalization method.
4. Experiments
4.1. Image Classification in Imag We experiment in the Imag classification dataset [50] with 1000 classes. We train on the ∼1.28M training images and evaluate on the 50,000 validation images, using the Re models [20].
Implementation details. As standard practice [20, 17], we use 8 GPUs to train all models, and the bat ean and variance of BN are computed within each GPU. We use the method of [19] to initialize all convolutions for all mod- els. We use 1 to initialize all γ parameters, except for each residual block’s last normalization layer where we initial- ize γ by 0 following [16] (such that the initial state of a residual block is identity). We use a weight decay of 0.0001 for all weight layers, luding γ and β (following [17] but unlike [20, 16]). We train 100 epochs for all models, and

ber of channels per group. b·c is the floor operation, and
 k“ bCthe same group of channels, assuming each group of chan- nels are stored in a sequential order along the C axis. GN computes µ and σ along the (H, W) axes and along a group of Figure 2 (rightmost), which is a simple case of 2 groups (G = 2) each having 3 channels. Given Si in Eqn.(7), a GN layer is defined by Eqn.(1), (2), and (6). Specifically, the pixels in the same group are normalized together by the same µ and σ. GN also learns the per-channel γ and β.

Relation to Prior Work. LN, IN, and GN all perform in- dependent computations along the batch axis. The two ex- treme cases of GN are equivalent to LN and IN (Figure 2).
Relation to Layer Normalization [3]. GN becomes LN if we set the group number as G = 1. LN assumes all channels in a layer make “similar contributions” [3]. Unlike the case of fully-connected layers studied in [3], this assumption can be less valid with the presence of convolutions, as discussed in [3]. GN is less restricted than LN, because each group of channels (instead of all of them) are assumed to subject to the shared mean and variance; the model still has flexibil- ity of learning a different distribution for each group. This leads to improved representational power of GN over LN, as shown by the lower training and validation error in ex- periments (Figure 4).
Relation to Instance Normalization [61]. GN becomes IN if we set the group number as G = C (i.e., one channel per group). But an only rely on the spatial dimension for computing the mean and variance and it misses the oppor- tunity of exploiting the channel dependence.
3.2. Implementation GN can be easily implemented by a few lines of code in PyTorch [42] and TensorFlow [1] where automatic differ- entiation is supported. Figure 3 shows the code based on

decrease the learning rate by 10× at 30, 60, and 90 epochs. During training, we adopt the data augmentation of [58] as implemented by [17]. We evaluate the top-1 classification error on the center crops of 224×224 pixels in the valida- tion set. To reduce random variations, we report the median error rate of the final 5 epochs [16]. Other implementation details follow [17]. Our baseline is the Re trained with BN [20]. To compare with LN, IN, and GN, we re ce BN with the specific variant. We use the same hyper-parameters for all models. We set G = 32 for GN by default.
Comparison of feature normalization methods. We first experiment with a regular batch size of 32 images (per GPU) [26, 20]. BN works successfully in this regime, so this is a strong basel o compare with. Figure 4 shows the error curves, and Table 1 shows the final results. Figure 4 shows that all of these normalization methods are able to converge. LN has a small degradation of 1.7%

4

以上内容仅为本文档的试下载部分，为可阅读页数的一半内容。如

要下载或阅读全文，请访问：https://d.book118.com/65612322422

2010032

https://d.book118.com/656123224222010032
https://d.book118.com/656123224222010032

