

Andrew login ID:
Full Name:

CS 15-213, Fall 2001

Final Exam
December 13, 2001

Instructions:

Make sure that your exam is not missing any sheets, then write your full name and Andrew login ID
on the front.

Write your answers in the space provided below the problem. If you make a mess, clearly indicate
your final answer.

The exam has a um score of 120 points.

Thi am is OPEN BOOK. You may use any books or notes you like. You may use a calculator, but
no laptops or other wireless devices. Good luck!

Page 1 of 18

1 (20):

2 (10):

3 (10):

4 (8):

5 (12):

6 (6):

7 (14):

8 (10):

9 (16):

10 (14):

TOTAL (120):

Problem 1. (20 points):
We are running programs on a machine with the following characteristics:

Values of type int are 32 bits. They are represented in two’s complement, and they are right shifted
arithmetically. Values of type unsigned are 32 bits.

Values of type float are represented using the 32-bit IEEE floating point format, while values of
type double use the 64-bit IEEE floating point format.

We generate arbitrary values x, y, and z, and convert them to other forms as follows:

/* Create some arbitrary values */
int x = random();
int y = random();
int z = random();
/* Convert to other forms */

(unsigned) x;
(unsigned) y;

unsigned
unsigned
double
double
double

ux =
uy =
dx =
dy =
dz =

(double)
(double)
(double)

x;
y;
z;

For each of the following C expressions, you are to indicate whether or not the expression always yields 1.
If so, circle “Y”. If not, circle “N”. You will be graded on each problem as follows:

If you circle no value, you get 0 points.

If you circle the right value, you get 2 points.

If you circle the wrong value, you get points (so don’t just guess wildly).

Page 2 of 18

Expression Always True?

(x<y) == (-x>-y) Y N

((x+y)<<4) + y-x == 17*y+15*x Y N

˜x+˜y+1 == ˜(x+y) Y N

ux-uy == -(y-x) Y N

(x >= 0) || (x < ux) Y N

((x >> 1) << 1) <= x Y N

(double)(float) x == (double) x Y N

dx + dy == (double) (y+x) Y N

dx + dy + dz == dz + dy + dx Y N

dx * dy * dz == dz * dy * dx Y N

Problem 2. (10 points):
A C function looper and the assembly code it compiles to on an IA-32 machine running Linux/GAS is
shown below:

looper:
pushl %ebp
movl %esp,%ebp int looper(int n, int *a)

{ int i;
int x = ;

pushl %esi
pushl %ebx
movl
movl
xorl
xorl
cmpl

8(%ebp),%ebx
12(%ebp),%esi
%edx,%edx
%ecx,%ecx
%ebx,%edx

for(i = ;

 ;
jge .L25

.L27: i++) { movl
cmpl

(%esi,%ecx,4),%eax
%edx,%eax

if () jle .L28
movl

.L28:
l
l

cmpl

%eax,%edx
x = ;

%edx
%ecx
%ebx,%ecx ; jl .L27

} .L25:
movl %edx,%eax
popl %ebx
popl %esi
movl %ebp,%esp
popl %ebp
ret

return x;
}

Based on the assembly code, fill in the blanks in the C source code.

Notes:

You may only use the C variable names n, a, i and x, not register names.

Use array notation in showing accesses or updates to elements of a.

Page 3 of 18

Problem 3. (10 points):
Consider the following omplete definition of a C struct along with the omplete code for a function
func given below.

node_t n; typedef struct node {
void func() { x;
node_t *m; y;
m = ; struct node *next;
m->y /= 16; struct node *prev;
return; } node_t; }

When this C code was compiled on an IA-32 machine running Linux, the following assembly code was
generated for function func.

func:
pushl %ebp
movl
movl
movl
movl
shrw
popl
ret

n+12,%eax
16(%eax),%eax
%esp,%ebp
%ebp,%esp
$4,8(%eax)
%ebp

Given these code fragments, fill in the blanks in the C code given above. Note that there is a unique answer.

The types must be chosen from the following table, assuming the sizes and alignment given.

Page 4 of 18

Type Size (bytes) Alignment (bytes)
char
short

unsigned short
int

unsigned int
double

1
2
2
4
4
8

1
2
2
4
4
4

Problem 4. (8 points):
Consider the source code below, where M an re constants declared with #define.

int array1[M][N];
int array2[N][M];

void copy(int i, int j)
{

array1[i][j] = array2[j][i];
}

Suppose the above code generates the following assembly code:

copy:
pushl %ebp
movl %esp,%ebp
pushl %ebx
movl
movl
leal
leal
subl
addl
sall
movl
movl
popl
movl
popl
ret

8(%ebp),%ecx
12(%ebp),%eax
0(,%eax,4),%ebx
0(,%ecx,8),%edx
%ecx,%edx
%ebx,%eax
$2,%eax
array2(%eax,%ecx,4),%eax
%eax,array1(%ebx,%edx,4)
%ebx
%ebp,%esp
%ebp

What are the values of M and N?

M =

N =

Page 5 of 18

以上内容仅为本文档的试下载部分，为可阅读页数的一半内容。如

要下载或阅读全文，请访问：https://d.book118.com/58532102323

3011041

https://d.book118.com/585321023233011041
https://d.book118.com/585321023233011041

