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We introduce a novel unsupervised  adaptation 

approach for object detection. We aim to alleviate the im- 

perfect translation problem of pixel-level adaptations, and 

the source-biased discriminativity problem of feature-level 

adaptations simultaneously. Our approach is composed of 

two stages, i.e.,  Diversification (DD) and Multi- 

-invariant Representation Learning (MRL). At the 

DD stage, we diversify the distribution of the labeled data 

by generating various dist tive shifted s from the 

source . At the MRL stage, we apply adversarial 

learning with a multi-  discriminator to encourage 

feature to be indistinguishable among the s. DD 

addresses the source-biased discriminativity, while MRL 

mitigates the imperfect image translation. We construct 

a structured  adaptation framework for our learn- 

ing paradigm and introduce a practical way of DD for im- 

plementation. Our method outperforms the state-of-the-art 

methods by a large margin of 3% ∼ 12% in terms of mean 

average precision (mAP) on various datasets. 

Figure 1. Overview of our learning paradigm. We illustrate a con- 
ceptual diagram of the distributions of the s on the right 
side. S and T represent for the source and the target , re- 
spectively, and each Ri represents the ith diversified . 

dress this issue, an unsupervised  adaptation method 
for object detection [3] was recently proposed. 

Unsupervised  adaptation has been studied to 
address the degeneration issu ween related s, 
which is closely related to the aforementioned degener- 

1. Introduction 

Object detection is a fundamental problem omputer 
vision as well as machine learning. With the recent ad- 
vances of the convolutional neura works (CNNs), CNN- 
based methods [13, 12, 35, 30, 34, 26, 8, 46, 29] have 
achieved significant progress in object detection based on 
fine ben arks [10, 27, 25]. Despite the promising re- 
sults, all of these object detectors suffer from the degen- 
erative problem when applied beyond these ben arks. 
Building datasets for a specific application can temporarily 
resolve this problem, nevertheless, the time and m ary 
costs urred when ly annotating such datasets are 
not negligible [40, 33]. Moreover, s e the intrinsic causes 
of the degenerative problem have been avoided instead of 
resolved, another generalization issue arises when extend- 
ing the same application to different environments. To ad- 

ative problem. With the rise of the deep neura - 
works, recent unsupervised deep  adaptation meth- 
ods [31, 11, 42, 2, 36, 1, 17] are mainly based on feature- 
level adaptation and pixel-level adaptation. Feature-level 
adaptation methods [31, 11, 42, 2] align the distributions 
of the source and the target  toward a cross-  
feature space. These approache pect the model super- 
vised by the labeled source  to infer on the target do- 
main effectively. However, the supervision of the inference 
layer mainly relies on the source  only in the feature- 
level adaptation methods. Thus, the feature extractor of the 
model is en d to manufacture the features in a way dis- 
criminative for the source  data, which is not suitable 
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for the target . Moreover, s e the object detection 
data is interwoven with the instances of interest and the rel- 
atively unimportant background, it is further hard for the 
source-biased feature extractor to extract discriminative fea- 
tures for the target  instances. Thus, object detectors 
adapted at the feature-level are at risk of the source-biased 
discriminativity and it can leads to false recognition on the 
target . On the other hand, pixel-level adaptation 
methods [36, 1, 17] focus on visual appearance translation 
toward the opposite . The model can then take ad- 
vantage of the information from the translated source im- 
ages [17, 1] or infer pseudo label of the translated target 
images [22]. Most existing pixel-level adaptation meth- 
ods [36, 1, 17] are based on the assumption that the image 
translator can perfectly convert one  to the opposite 

 such that the translated images can be regarded as 
those from the opposite . However, these methods 
reveal imperfect translation in many adaptation cases s e 
the performance of the translator heavily depends on the ap- 
pearance gap between the source and the target , as 
shown in Fig. 2. Regarding these omple y translated 
source images as from the target  can cause new do- 
main discrepancy issue. 

To tackle the aforementioned limitations, we introduce 
a novel  adaptation paradigm for object detection. 
Our learning paradigm consists of  Diversification 
(DD) and Multi- -invariant Representation Learning 
(MRL), as shown in Fig. 1. Unlike most existing  
adaptation methods, DD intentionally causes several dis- 
t tive shifted s from the source  to enrich 
the distribution of the labeled data. On the other hand, MRL 
boosts the  invariance of the features by unifying the 
scattered s. Using the aforementioned approaches, 
we propose a universal  adaptation framework for 
object detection. Our framework trains -invariant 
object detection layers with diversified annotated data while 
simultaneously encouraging dispersed s toward a 
common feature space. To demonstrate the effectiveness 
of our method, we conduct extensive experiments on Real- 
world Datasets [10], ic Media Datasets [22], and Ur- 
ban Scene Datasets [7, 37] based on Faster R-CNN. Our 
framework achieves state-of-the-art performance on various 
datasets. 

In summary, we have three contributions in our paper: 

• We propose a novel learning paradigm for unsuper- 
vised  adaptation. Our learning approach ad- 
dresses the source-biased discriminativity issue and 
the imperfect translation issue. 

(a) Source  (b) Target  (c) Translated  

Figure 2. Examples of the imperfect image translation. The first 
and second rows visualize examples of the translated image from 
the real-world to ic media and between urban scenes, respec- 
tively. 

method outperforms the state-of-the-art methods with 
a large margin by 3% ∼ 12% mAP. 

2. Related work 

2.1. CNN-based Object Detection 

Traditional methods [44, 9] use a sliding window frame- 
work with handcrafted features and shallow inference mod- 
els. With rise of the convolutional neura works, R- 
CNN [13] obtains a promising result with a selective search 
algorithm and classification through the CNN features. Fast 
R-CNN [12] reduces the bottleneck of R-CNN by shar- 
ing features among regions in the same image. Faster R- 
CNN [35] adopts a fully convolutiona work called a Re- 
gion Proposa work (RPN) to mitigate another bottle- 
neck caused by the selective search algorithm. YOLO [34] 
achieves significant improvement in the inference speed us- 
ing a single-stage work. SSD [30] uses multi-scale 
features to enhance the relatively low accuracy of YOLO. 
Retin  [26] further improves the performance of single- 
staged object detectors using the focal loss to reduces the 
performance degradation caused by easy negative exam- 
ples. While these methods push the limit on the large-scale 
datasets with rich annotations, generalization errors which 
arises during their application have not been investigated 
thus far. 

2.2. Unsupervised  Adaptation 

 adaptation has been studied intensely in rela- 
tion to the image classification task [21, 41]. Traditional 
methods focus on reducing  discrepancy through 
instance re-weighting [21, 41, 14] and shallow feature 
alignment strategies [16, 32]. With the success of deep 
learning scheme, early deep  adaptation mainly 
arises into um Mean Discrepancy (MMD) minimiza- 
tion [31, 42, 2] or feature confusion through adversarial 

• We structurize our learning paradigm by integrating 
DD and MRL in the form of a framework. 

• We conduct extensive experiments to validate the ef- 
fectiveness of our method on various datasets. Our 
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(a) Feature-level adaptation  (b) Pixel-level adaptation (c)  Diversification (d) MRL with  Diversification 

Figure 3. Comparison of distribution transformation by different  adaptation methods. MRL refers to Multi- -invariant 
Representation Learning. S and T denote the source  and the target , respectively. R1, R2, R3, and R4 are shifted s 
of the source . The arrows indicate the feature-level adaptation trends. The s with asterisks denote the results of feature-level 
adaptation. The s with a boundary imply that the object detectio work is supervised by these s. 

learning [11]. Recently, as the image-to-image translation 
has become highlighted with promising results [23, 24, 28, 
49] through Generative Adversaria works (GANs) [15], 
pixel-level adaptation methods [36, 20, 1] have been devel- 
oped to address the  shift issue by translating source 

 images into the target style. As unsupervised do- 
main adaptation attracted considerable interest with its ef- 
fectiveness, recent works [17, 47, 6, 5, 38, 43, 19, 48] have 
been attempted to address the generalization issue in the se- 
mantic segmentation task. 

Despite the recent success of unsupervised  adap- 
tation in various computer vision tasks, unsupervised do- 
main adaptation for the object detection task has not been 
explored so far except few pioneers [22, 3]. Inoue et al. [22] 
adopt a conventional unsupervised pixel-level  adap- 
tation method as part of a two-staged weakly supervised do- 
main adaptation framework. Ch  al. [3] align distribu- 
tions of the source and the target  at the image level 
and instance level to address various causes of the  
shift separa y. While these methods address the problem 
of degeneracy without considering the limitations of exist- 
ing  adaptation approaches, we aim to mitigate these 
issues through a two-step learning paradigm. 

(a) Given image (b) Images with appearance shift 

Figure 4. Examples of variously shifted images for given images. 

3.1.  Diversification 

Without loss of generality, we assume that there exist 
numerous possibilities of shifted s that preserve the 
corresponding semantic information of the source  
but appear in different ways. For instance, as shown in 
Fig. 4, we can easily conceive of various visually shifted 
images from a given image regardless of the existence of 
a feasible image translator. Along the same line, numer- 
ous variations of image translators can achieve considerable 

 shift from the given source , which we call 
 shifters.  Diversification (DD) is a method 

which diversifies the source  by intentionally gener- 
ating dist tive  discrepancy through these  
shifters. The diversified distribution of the labeled data en- 
courages the model to infer among data with large intra- 
class variance discriminatively. Thus, the model is en d 
to extract semantic features that are not biased to a particular 

. This allows the model to extract unbiased semantic 
features from the target , which is more discrimina- 
tive than the source-biased features. With th ter dis- 
criminativity of target  features, we can assimilate 
the s with less feature collapse, resulting in more 

3. Methods 

We propose a novel learning paradigm to alleviate the 
source-biased discriminativity in feature-level adaptation 
and the imperfect translation in pixel-level adaptation. We 
start by ex ining the two stages of our method,  
Diversification and Multi- -invariant Representation 
Learning. Then, a universal  adaptation framework 
for object detection is introduced. Figure 3 shows con- 
ceptual description of feature-level adaptation, pixel-level 
adaptation, and our method. 
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desirable adaptation. 
Among the plenteous possibilities of  shifters, in- 

spired by the limitation of pixel-level adaptation, we practi- 
cally realize the possibilities using the imperfections of the 
image translation. Let us denote a source  sample as xs 

and a target  sample as xt with  distribu- 
tions ps and pt, respectively. In general, image translation 
methods aim to train a generator G by optimizing the trans- 
lated image G(xs) to which appears to be sampled from the 
target . However, s e the generato work has 
high enough capacity for various translations, the adversar- 
ial loss alone cannot guarantee the conversion of a given xs 

to the desired target image. To redeem this instability, image 
translation methods add constraints to the objective function 
Lim to reduce the possibility of the undesirable generators: 

a pairwise  gap, following the pixel-level adapta- 
tion methods. For instance, we regard the translated source 

 as separate from the source or the target  
and consider the three s for conventional pixel-level 
adaptation methods. In most existing feature-level adapta- 
tion methods, the adversarial learning is applied through the 
binary discriminator. However, these s have pair- 
wise  shifts given by the  adaptation problem 
or caused by the imperfect image translation. Thus, regard- 
ing multiple s as the same  during adversarial 
learning can fatally disturb the model from learning com- 
mon features. Thus, we use the discriminator with (n + 2) 

outputs so as to learn to distinguish the s using the 
cross entropy loss. 

Adversarial learning methods attain -invariant 
features by inducing a feature which confuses the  
discriminator. Thus, onventional cross-  adap- 
tation problems, confusion in the discriminator can be 
achieved by designating each  to resemble the other. 
However, in a multi-  situation, it is not desirable to 
specify each  to resemble each specific target do- 
main. To address this issue, inspired by [11], we attach 
a gradient reverse layer (GRL) at the front-end of the dis- 
criminator. S e the GRL s the generator to manu- 
facture the features of the given images as if they were not 
sampled from its , the features of each  are 
encouraged to be -invariant. The objective function 
for MRL can be written as: 

Lim(G, D, M ) = LGAN(G, D) + αLcon(G, M ), (1) 

(G, D) = E t 
t L t [logD(x )] GAN x ∼p (x ) t 

+ E s 
s 

s [log(1 − D(G(x )))], (2) x ∼p (x ) s 

where D is the discriminator for adversarial learning, 
Lcon(G, M ) is the constraint loss with a possibly existing 
additional module M and α is a weight that balances the 
two losses. Here, the additional module implies a supple- 
menta work necessary for a sophisticated constraint. 

In this basic setting, we observe that varying the learning 
trend with alternative constraints causes the generator G to 
diversify the appearance of the translated images. Based on 
this observation, we apply several variants of constraints to 
achieve dist t  shifters. The objective function for 
the  shifter can be written as: 

nX+1 X 
1 (D f )log(p (x )) 

(u,v) Lmrl(xf , Dxf ) = − f 
{i} x i 

i=0 u,v 

(4) 
where xf is the feature map given for the discriminator, 1{i} 

LDS(G, D, M ) = LGAN(G, D) + βLcon(G, M ), (3) 
p(u,v) 

is the indicator function for a singleton {i}, is the i 

 probability for the ith  of the feature vector 
located at (u, v) of xf , and Dxf is the ground-truth for the 

 label of xf . 

3.3. Structured  Adaptation framework for 
Object Detection 

In this section, we structurize our learning paradigm by 
integrating DD and MRL into a framework. Without loss 
of generality, we assume that there is n number of  
shifters Gi for i = 1, ..., n. Our framework aims to learn 

-invariant representation an pt the object detec- 
tor for these representations simultaneously. To achieve the 
goal, every (n + 2) number of s is utilized for MRL, 
while the source  and the shifted s encourage 
the localization layers and the classification layers of the 
object detector. The objective function for the framework 
can be written as follows: 

L(xs, xt, ys) = LMRL(xs, xt) + LLOC(xs, ys) 

where Lcon(G, D, M ) is the loss for constraints that en- 
courages the  shifter to be differentiated, M denotes 
possibly existing additional modules for the constraint loss, 
and β is a weight that balances the two losses. Practical im- 
plementation details for diversifying  shifters will be 
introduced in section 4.2. 

3.2. Multi- -invariant Representation Learn- 
ing 

onventional pixel-level adaptations, substantial train- 
ing of the inference layer heavily depends on the translated 
source images. However, these methods run the risk of im- 
perfect image translation, which can cause another  
shift issue with the target . To address this limita- 
tion, we design an adversarial learning scheme called Multi- 

-invariant Representation Learning (MRL), which 
encourages -invariant features among the diversely 
scattered s through adversarial learning. We assume 
that we have (n + 2) number of diversified s with + LCLS(xs, ys), (5) 
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