2022 年湖南省衡阳市高考数学二模试卷

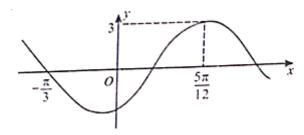
一、早远规: 个规共 8 小规, 母小规 5 分, 共 4U 分。在母小规给出的远坝中, 只有一坝定付合规 1 安永			
的。			
1. 设集合 $A = \{x \lg x < 1\}$, $B = \{x x \le 2\}$, 则 $A \cup B = $ ()			
A. $\{ x 0 < x \leqslant 2 \}$	$B. \{x x\leqslant 2\}$	C. $\{x x < 10\}$	D. <i>R</i>
2. 已知复数 $z=2(1-i)i$,则 $\frac{1}{z}$ 的虚部为()			
A. $-2i$	B. -2	C. 2	D. 2 <i>i</i>
3. 在冬奥会花样滑冰的比	比赛中,由 9 位评委会	分别给参赛选手评分,	评定该选手的成绩时,从9个原始评分
中去掉 1 个最高分、 1 个最低分,得到 7 个有效评分。 7 个有效评分与 9 个原始评分相比,一定不变的数字			
特征是()			
A . 极差	B. 平均数	C. 方差	D. 中位数
4. 设 m 、 n 是空间中两条不同的直线, α , β 是两个不同的平面,则下列说法正确的是()			
A. 若 $m \perp \alpha$, $n \perp \beta$, $m \perp n$, 则 $\alpha \perp \beta$			
B. 若 $m \subset \alpha$, $n \subset \beta$, $\alpha / \! / \beta$, 则 $m / \! / n$			
C. 若 $m//\alpha$, $n//\beta$, $\alpha \perp \beta$, 则 $m \perp n$			
D. 若 $m \subset \alpha$, $n \subset \beta$, $m//\beta$, $n//\alpha$, 则 $\alpha//\beta$			
5. 某学校安排音乐、阅读、体育和编程四项课后服务供学生自愿选择参加,甲、乙、丙、丁 4 位同学每人			
限报其中项. 已知甲同学报的项目其他同学不报的情况下, 4 位同学所报项目各不相同的概率等于()			
A. $\frac{1}{18}$	B. $\frac{3}{32}$	C. $\frac{2}{9}$	D. $\frac{8}{9}$
6. 公元前 6 世纪, 古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图, 发现了黄金分割均为			
0.618 ,这一数值也可以表示为 $m=2\sin 18^{\circ}$,若 $m^2+n=4$,则 $\frac{m\sqrt{n}}{2\cos^2 27^{\circ}-1}=$ ()			
A. 8	B. 4	C. 2	D. 1
7. 设 a 、 b 、 c 分别是 $\triangle ABC$ 的内角 A 、 B 、 C 的对边,已知			
$(b+\sqrt{3}c)\sin(A+C)=(a+c)(\sin A-\sin C)$,设 ${\bf D}$ 是 ${\bf BC}$ 边的中点,且 $\triangle ABC$ 的面积为 ${\bf 1}$,则			
$\overrightarrow{AB} \cdot (\overrightarrow{DA} + \overrightarrow{DB})$ 等于()			
A. 2	B. $2\sqrt{3}$	C. $-2\sqrt{3}$	D2

8. 已知定义在 R 上的奇函数 f(x) 恒有 f(x-1) = f(x+1) , 当 $x \in [0,1)$ 时, $f(x) = \frac{2^x-1}{2^x+1}$,已知 $k \in (-\frac{2}{15}, -\frac{1}{18})$,则函数 $g(x) = f(x) - kx - \frac{1}{3}$ 在 (-1, 6) 上的零点个数为()

- A. 4 个
- B. 5 个
- C. 3 个或 4 个 D. 4 个或 5 个

二、多选题:本题共4小题,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5 分. 部分选对的得2分, 有选错的得0分。

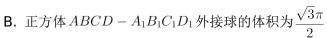
- 9. 下列结论中正确的是()
- A. 在 $\triangle ABC$ 中, 若A > B, 则 $\sin A > \sin B$
- B. 在 $\triangle ABC$ 中,若 $\sin 2A = \sin 2B$,则 $\triangle ABC$ 是等腰三角形
- **C.** 两个向量 \overrightarrow{a} , \overrightarrow{b} 共线的充要条件是存在实数 λ , 使 $\overrightarrow{b} = \lambda \overrightarrow{a}$
- D. 对于非零向量 \overrightarrow{a} , \overrightarrow{b} , $\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{0}$ 是 $\overrightarrow{a} / / \overrightarrow{b}$ 的充分不必要条件
- **10.** 函数 $f(x) = A\sin(\omega x + \varphi)$ (其中 A > 0, $\omega > 0$, $|\varphi| < \pi$) 的部分图象如图所示、将函数 f(x) 的图象向 左平移 $\frac{\pi}{6}$ 个单位长度,得到y = g(x)的图象,则下列说法正确的是()

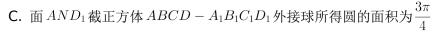


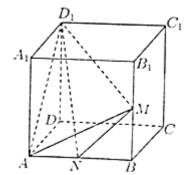
- A. 函数 q(x) 为奇函数
- B. 函数 g(x) 在 $(\frac{\pi}{3}, \frac{2\pi}{3})$ 上单调递减
- C. 函数 F(x) = xf(x) 为偶函数
- D. 函数 f(x) 的图象的对称轴为直线 $x = k\pi + \frac{\pi}{4}(k \in z)$
- 11. 圆锥曲线的光学性质: 从双曲线的一个焦点发出的光线, 经双曲线反射后, 反射光线的反向延长线过双 曲线的另一个焦点、由此可得,过双曲线上任意一点的切线,平分该点与两焦点连线的夹角、请解决下面 问题 已知 F_1 , F_2 分别是双曲线C: $x^2 - \frac{y^2}{2} = 1$ 的左、右焦点,点P为C在第一象限上的点,点M在 F_1P 延长线上,点 Q 的坐标为 $(\frac{\sqrt{3}}{3},0)$,且 PQ 为 $\angle F_1PF_2$ 的平分线,则下列正确的是()

A.
$$\frac{|PF_1|}{|PF_2|} = 2$$

- $\mathbf{B.} \ |\overrightarrow{PF_1} + \overrightarrow{PF_2}| = 2\sqrt{3}$
- C. 点 P 到 x 轴的距离为 $\sqrt{3}$
- D. $\angle F_2PM$ 的角平分线所在直线的倾斜角为 150°
- **12.** 已知正方体 $ABCD A_1B_1C_1D_1$ 的棱长为 1.M 、N 分别为 BB_1 、AB 的中点下列说法正确的是()







D. 以顶点 ${m A}$ 为球心, $\frac{2\sqrt{3}}{3}$ 为半径作一个球,则球面与正方体的表面相交所得到的曲线的长等于 $\frac{5\sqrt{3}\pi}{6}$

三、填空题:本题共4小题,每小题5分,共20分。

13. 二项式 $(\sqrt{x} - \frac{2}{x})^9$ 的展开式中常数项是______

14. 函数 $f(x)=x\ln(-2x)$,则曲线 y=f(x) 在 $x=-\frac{e}{2}$ 处的切线方程为_____.

15. 意大利数学家列昂那多·斐波那契以兔子繁殖为例,引入"兔子数列":1,1,2,3,5,8,13,

21, **34**, **55**, …即 F(1) = F(2) = 1, $F(n) = F(n-1) + F(n-2)(n \ge 3, n \in N^*)$,此数列在现代物理"准晶体结构"、化学等领域都有着广泛的应用,若此数列的各项除以 **3** 的余数构成一个新数列 $\{a_n\}$ 的前 **2022** 项的和为

16. 已知椭圆 C_1 : $\frac{x^2}{a_1^2} + \frac{y^2}{b_1^2} = 1(a_1 > b_1 > 0)$ 与双曲线 C_2 : $\frac{x^2}{a_2^2} - \frac{y^2}{b_2^2} = 1(a_2 > 0, b_2 > 0)$ 有相同的焦点 F_1 、

 F_2 ,椭圆 C_1 的离心率为 e_1 ,双曲线 C_2 的离心率为 e_2 ,点P为椭圆 C_1 与双曲线 C_2 的第一象限的交点,且 $\angle F_1 P F_2 = \frac{\pi}{3}$,则 $\frac{e_1 e_2}{e_1 + e_2}$ 的取值范围是_____.

四、解答题:本题共6小题,共70分。解答应写出文字说明,证明过程或演算步骤。

17. (本小题 10 分)

已知数列 $\{a_n\}$ 是递增的等差数列, $a_3 = 7$,且 a_4 是 a_1 与 a_{13} 的等比中项.

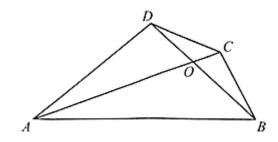
(1) 求数列 $\{a_n\}$ 的通项公式;

$$(2)$$
 ① $b_n = a_n \cdot (a_1)^n$; ② $b_n = \frac{1}{\sqrt{a_n} + \sqrt{a_{n+1}}}$; ③ $b_n = \frac{1}{a_n a_{n+1}}$, 从上面三个条件中任选一个,求数列 $\{b_n\}$ 的前 \boldsymbol{n} 项和 T_n .

18. (本小题 12 分)

如图,在四边形 ABCD 中,AC 与 BD 相交于点 O,AC 平分 $\angle DAB$, $\angle ABC = \frac{\pi}{3}$, AB = 3BC = 3 .

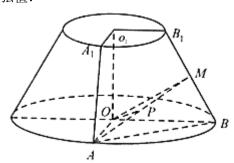
- (1) 求 $\sin \angle DAB$;
- (2) 若 $\angle ADC = \frac{2\pi}{3}$, 求 $\triangle ABD$ 的面积.



19. (本小题 12 分)

如图,已知圆台 O_1O 的下底面半径为 $\mathbf{2}$,上底面半径为 $\mathbf{1}$,母线与底面所成的角为 $\frac{\pi}{3}$, AA_1 , BB_1 为母线,平面 $AA_1O_1O_1$ 平面 BB_1O_1O , \mathbf{M} 为 BB_1 的中点。

- (1)证明: 平面 *ABB*₁ 上 平面 *AOM*;
- (2) 当点 P 为线段 AM 的中点时,求直线 AM 与平面 OPB 所成角的正弦值.



20. (本小题 12 分)

随着近期我国不断走向转型化进程以及社会就业压力的不断加剧,创业逐渐成为在校大学生和毕业大学生的一种职业选择方式,但创业过程中可能会遇到风险,有些风险是可以控制的,有些风险不可控制的,某

地政府为鼓励大学生创业,制定了一系列优惠政策. 已知创业项目甲成功的概率为 $\frac{2}{3}$,项目成功后可获得政府奖金 **20** 万元; 创业项目乙成功的概率为 $P_0(0 < P_0 < 1)$,项目成功后可获得政府奖金 **30** 万元. 项目没有成功则没有奖励,每个项目有且只有一次实施机会,两个项目的实施是否成功互不影响,项目成功后当地政府兑现奖励.

- (1) 大学毕业生张某选择创业项目甲,毕业生李某选择创业项目乙,记他们获得的奖金累计为X(单位:万元),若 $X \leq 30$ 的概率为 $\frac{7}{9}$ 求 P_0 的大小;
- (2) 若两位大学毕业生都选择创业项目甲或创业项目乙进行创业,问: 他们选择何种创业项目,累计得到的 奖金的数学期望最大?

21. (本小题 12 分)

设椭圆 $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$ 的左顶点为 ${\pmb A}$,上顶点为 ${\pmb B}$. 已知椭圆的离心率为 $\frac{1}{2}$, $|AB|=\sqrt{7}$.

- (1) 求椭圆的方程;
- (2) 设 P,Q 为椭圆 E 上异于点 A 的两动点,若直线 AP、AQ 的斜率之积为 $-\frac{1}{4}$.
- ①证明直线 PQ 恒过定点,并求出该点坐标;
- ②求 $\triangle APQ$ 面积的最大值.

22. (本小题 12 分)

已知函数 $f(x) = x^2 - m \ln x$, 其中 m > 0.

- (1) 若 m=2,求函数 f(x) 的极值;
- (2) 设 g(x) = xf(x) 1,若 g(x) > 0 在 $(1, +\infty)$ 上恒成立,求实数 **m** 的取值范围.

答案和解析

1. 【答案】 C

【解析】解: $: A = \{x | \lg x < 1\} = \{x | 0 < x < 10\}, B = \{x | x \le 2\},$

 $\therefore A \cup B = \{x | 0 < x < 10\} \cup \{x | x \le 2\} = \{x | x < 10\}.$

故选: C.

求解对数不等式化简 A, 再由并集运算得答案.

本题考查并集及其运算,考查对数不等式的解法,是基础题.

2. 【答案】B

【解析】解: z = 2(1-i)i = 2+2i,

 $\dot{z} = 2 - 2i$

 \dot{z} 的虚部为-2.

故选: B.

根据已知条件,结合复数的运算法则,以及复数的性质,即可求解.

本题主要考查复数的运算法则,以及复数的性质,属于基础题.

3. 【答案】D

【解析】解:7个有效评分与9个原始评分相比,平均数、极差、方差都有可能变化,

9 个原始评分的中位数是从小到大排序后的第 5 个数, 7 个有效评分的中位数是从小到大排序后的第 4 个数,

是同一个数,

故选: D.

9个原始评分的中位数是从小到大排序后的第5个数,7个有效评分的中位数是从小到大排序后的第4个数,是同一个数.

本题考查了数字特征的性质,属于基础题.

4. 【答案】A

【解析】解: m、n 是空间中两条不同的直线, α , β 是两个不同的平面,

对于 A, 若 $m \perp \alpha$, $n \perp \beta$, $m \perp n$, 则由面面垂直的判定定理得 $\alpha \perp \beta$, 故 A 正确;

对于 B, 若 $m \subset \alpha$, $n \subset \beta$, $\alpha //\beta$, 则 $m \in n$ 平行或异面, 故 B 错误;

对于 C, 若 $m//\alpha$, $n//\beta$, $\alpha \perp \beta$, 则 m 与 n 相交、平行或异面,故 C 错误;

对于 D, 若 $m \subset \alpha$, $n \subset \beta$, $m//\beta$, $n//\alpha$, 则 $\alpha = \beta$ 平行或相交, 故 D 错误.

故选: A.

利用空间向量法可判断 A; 根据已知条件判断线线、面面位置关系, 判断 BCD.

本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力,是中档题.

5. 【答案】 C

【解析】解:甲同学报的项目其他同学不报的情况下,4 位同学所报项目各不相同的概率为 $\frac{C_4^{AA}}{C_4^2 3^3} = \frac{2}{9}$.

故选: C.

甲同学报的项目其他同学不报的情况下,**4** 位同学所报项目各不相同的情况有 $_{33}^{C_4A}$ 种,甲同学报的项目其他同学不报的情况有 $_{33}^{C_43}$ 种,前面数据除以后面数据可得答案.

本题考查古典概型应用,考查数学运算能力及抽象能力,属于基础题.

6.【答案】C

【解析】解: $: m = 2\sin 18^{\circ}$,若 $m^2 + n = 4$,

$$\therefore n = 4 - m^2 = 4 - 4\sin^2 18^\circ = 4(1 - \sin^2 18^\circ) = 4\cos^2 18^\circ ,$$

$$\therefore \frac{m\sqrt{n}}{2\cos^2 27^\circ - 1} = \frac{2\sin 18^\circ \sqrt{4\cos^2 18^\circ}}{1 + \cos 54^\circ - 1} = \frac{4\sin 18^\circ \cos 18^\circ}{\sin 36^\circ} = 2.$$

故选: C.

由已知利用同角三角函数基本关系式可求 $n=4\cos^218^\circ$,利用降幂公式,诱导公式,二倍角的正弦函数公式化简所求即可计算得解.

本题主要考查了同角三角函数基本关系式,降幂公式,诱导公式,二倍角的正弦函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.

7. 【答案】B

【解析】解: $\because (b+\sqrt{3}c)\sin(A+C) = (a+c)(\sin A - \sin C)$,

∴由正弦定理可得: $(b+\sqrt{3}c)b=(a+c)(a-c)$,整理可得: $b^2+c^2-a^2=-\sqrt{3}bc$,

∴由余弦定理可得:
$$\cos A = -\frac{\sqrt{3}}{2}$$
, ∴由 $A \in (0,\pi)$, 可得: $A = \frac{5\pi}{6}$,

又 ABC 的面积为 1, 即 $\frac{1}{2}bc\sin\frac{5\pi}{6}=1$, $\therefore bc=4$,

$$\nabla \overrightarrow{AB} \cdot (\overrightarrow{DA} + \overrightarrow{DB}) = (\overrightarrow{DB} - \overrightarrow{DA}) \cdot (\overrightarrow{DA} + \overrightarrow{DB}) = \overrightarrow{DB}^2 - \overrightarrow{DA}^2$$

$$\begin{split} &= \frac{\overrightarrow{CB}^2}{4} - \frac{(\overrightarrow{AB} + \overrightarrow{AC})^2}{4} = \frac{(\overrightarrow{AB} - \overrightarrow{AC})^2}{4} - \frac{(\overrightarrow{AB} + \overrightarrow{AC})^2}{4} \\ &= -\frac{4\overrightarrow{AB} \cdot \overrightarrow{AC}}{4} = -\overrightarrow{AB} \cdot \overrightarrow{AC} = -bc\cos A = 2\sqrt{3} \; , \end{split}$$

故选: B.

利用正弦定理边角互化思想以及余弦定理可求得 $A=\frac{5\pi}{6}$,由三角形的面积可求得 bc=4,由平面向量减法 法则可得 $\overrightarrow{AB}\cdot(\overrightarrow{DA}+\overrightarrow{DB})=-bc\cos A$,进而可得出结果.

本题考查平面向量的数量积运算,考查学生的运算能力,属于中档题.

8. 【答案】D

【解析】解:

$$\therefore f(x-1) = f(x+1), \quad \therefore f(x)$$

的周期为2,

又:: f(x) 为奇函数,

$$f(x) = -f(-x),$$

令
$$x = 1$$
,得 $f(1) = -f(-1)$,又

$$f(-1) = f(1)$$
,

$$f(1) = f(-1) = 0$$
, $f(1) = 0$

$$x \in (-1,1)$$
 时, $f(x) = \frac{2^x - 1}{2^x + 1} = 1 - \frac{2}{2^x + 1}$,

由 $y = \frac{2}{2^x + 1}$ 单调递减得函数 f(x) 在 (-1,1) 上单调递增,

$$\therefore f(-1) < f(x) < f(1)$$
, 得 $-\frac{1}{3} < f(x) < \frac{1}{3}$, 作出函数图象如图,

由图象可知当 $y = kx + \frac{1}{3}$ 经过 $(5, -\frac{1}{3})$ 时, $k = -\frac{2}{15}$,此时在(-1, 6)上只有3个零点,

当
$$y = kx + \frac{1}{3}$$
 经过 $(3,0)$ 时, $k = -\frac{1}{9}$,此时有 5 个零点,

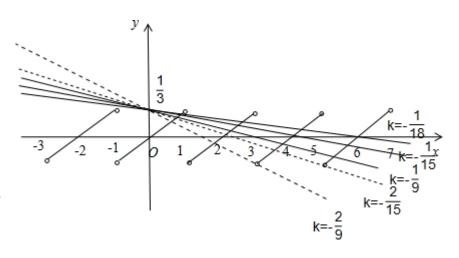
当
$$-\frac{2}{15}$$
< k < $-\frac{1}{9}$ 时,有4个零点,

当
$$y = kx + \frac{1}{3}$$
经过 $(5,0)$ 时, $k = -\frac{1}{15}$,此时有 5 个零点,

当
$$-\frac{1}{9}$$
< k < $-\frac{1}{15}$ 时,有4个零点,

当
$$y = kx + \frac{1}{3}$$
 经过 $(6,0)$ 时, $k = -\frac{1}{18}$,此时在 $(-1,6)$ 上只有 **3** 个零点,

当
$$-\frac{1}{15} < k < -\frac{1}{18}$$
时,有 **4** 个零点,



$$\therefore -\frac{2}{15} < k < -\frac{1}{18}$$
时,函数 $g(x) = f(x) - kx - \frac{1}{3}$ 在 $(-1,6)$ 上的零点个数为 **4** 个或 **5** 个,

故选: D.

本题利用奇函数性质和关系式转化求出 f(x) 的关系式,再利用数形结合思想求出 k 的值的范围. 本题考查了函数的性质,和数形结合思想,难度较大,属于中档题.

9. 【答案】AD

【解析】解. 选项 A,若 A>B,则 a>b,由正弦定理知, $\frac{a}{\sin A}=\frac{b}{\sin B}$,所以 $\sin A>\sin B$,即选项 A 正确;

选项 B,若 $\sin 2A = \sin 2B$,则 2A = 2B 或 $2A + 2B = \pi$,所以 A = B 或 $A + B = \frac{\pi}{2}$,即 $\triangle ABC$ 为等腰或直角三角形,即选项 B 错误:

选项 C,若 $\overrightarrow{a} = \overrightarrow{0}$, $\overrightarrow{b} \neq \overrightarrow{0}$,则 \overrightarrow{a} 与 \overrightarrow{b} 共线,但不存在实数 λ ,使 $\overrightarrow{b} = \lambda \overrightarrow{a}$,即选项 C 错误;

选项 D,若 \overrightarrow{a} + \overrightarrow{b} = $\overrightarrow{0}$,则 \overrightarrow{a} 与 \overrightarrow{b} 是相反向量,显然 \overrightarrow{a} // \overrightarrow{b} ,满足充分条件,但 \overrightarrow{a} // \overrightarrow{b} ,不一定有 \overrightarrow{a} + \overrightarrow{b} = $\overrightarrow{0}$,不满足必要条件,即选项 D 正确.

故选: AD.

选项 A,结合"大角对大边"和正弦定理,可判断;

选项 B, 易知 2A = 2B 或 $2A + 2B = \pi$, 从而判断三角形的形状;

选项 C, 举特例, $\overrightarrow{a} = \overrightarrow{0}$, $\overrightarrow{b} \neq \overrightarrow{0}$;

选项D,由共线向量的基本定理,可判断.

本题考查命题的真假判断,主要涉及正弦定理,共线向量的基本定理,考查逻辑推理能力和运算能力,属于中档题.

10.【答案】AB

【解析】【分析】

本题主要考查了函数 $y=A\sin(\omega x+\varphi)$ 的图象求解函数解析式,还考查了正弦型函数性质的应用,属于中档题.

由图象结合最值求出 A,由周期求出 ω ,结合函数图象所经过的点可求 φ ,进而可求函数解析式,再结合正弦型函数的性质分别检验各选项即可判断.

【解答】

解: 由图象可知, A=3, $\frac{3T}{4}=\frac{5\pi}{12}-(-\frac{\pi}{3})=\frac{3\pi}{4}$,

所以
$$T = \pi$$
, $\omega = 2$, $f(x) = 3\sin(2x + \varphi)$,

$$abla f(rac{5\pi}{12}) = 3\sin(rac{5\pi}{6} + arphi) = 3$$
 ,

故
$$arphi=2k\pi-rac{\pi}{3}$$
 , $k\in Z$, $\operatorname{\bigcirclest}|arphi|<\pi$,

所以 $f(x)=3\sin(2x-\frac{\pi}{3})$, $g(x)=3\sin2x$ 为奇函数, A 正确;

在区间 $(\frac{\pi}{3},\frac{2\pi}{3})$ 上, $2x\in\left(\frac{2\pi}{3},\frac{4\pi}{3}\right)$,所以 g(x) 在 $(\frac{\pi}{3},\frac{2\pi}{3})$ 上单调递减, $\textbf{\textit{B}}$ 正确;

$$F(x) = xf(x) = 3x\sin(2x - \frac{\pi}{3})$$
 显然不为偶函数, C 错误;

令
$$2x - \frac{\pi}{3} = 2k\pi + \frac{\pi}{2}$$
 得 $x = k\pi + \frac{5\pi}{12}$, $k \in \mathbb{Z}$, D 错误.

故选 AB.

11.【答案】AD

【解析】解:由已知可得PQ是双曲线的一条切线,

设点 $P(x_0, y_0)$,则切线 PQ 为 $x_0x - \frac{y_0y}{2} = 1$,

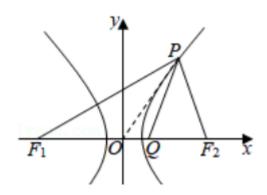
将点 $Q(\frac{\sqrt{3}}{3},0)$ 代入切线方程,可得 $x_0=\sqrt{3}$,

所以 $P(\sqrt{3},2)$,即点P到x轴的距离为2,所以C错误;

由双曲线的方程可得 $F_2(\sqrt{3},0)$,

由角平分线定理可知 $\frac{|PF_1|}{|PF_2|} = \frac{|F_1Q|}{|QF_2|} = 2$,故**A**正确;

因为 $|\overrightarrow{PF_1} + \overrightarrow{PF_2}| = 2|\overrightarrow{OP}| = 2\sqrt{7}$,故**B**错误;



又因为直线 PQ 的斜率为 $\sqrt{3}$,所以 $\angle F_2PM$ 的角平分线所在直线的斜率为 $\frac{\sqrt{3}}{3}$,即倾斜角为 150° ,故 D 正确 .

故选: AD.

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/54622213505
4010050