Homework #4:
Brief Solutions

1. On 2-dimensional space with real coordinates (x, y), define position eigenstates |x, yi
with x| x, yi= x|x, yi and y |x, yi = y|x, yi and normalization hx, y|x°, y’i = 6(x—x)6(y —P);
and momentum eigenstates |pPx, pyl with P x|px, Pyi = pxlpx Pyl and p y|px Pyl = PylpPx Pyl and
normalization hpx, pylp°, P01 = 6(px - PY) 6(py - P°,).

Here [X, px] =[Y ,py] =ih, and other commutators between them are zero.

The rotations around the origin form the SO(2) group. Denote the counter-clockwise
rotation of angle 6 by g(6), which maps the point (x, y) to (xxcos 6 — y sin 6, xsin 6 + y cos 6).
It is easy to check that g(6) - g(6") = g(6 + 69 mod 2m), so this is an Abelian group.

(a). (2pts) The unitary operator for g(6) is
ﬂ = dx dylxcos 8- ysin 6, xsin 0 + ycos Bihx, y|. Compute the matrix element of

ﬁ, under the momentum eigenbasis, hp, p°| g‘@) |, Pyl

(b). (2pts) Compute the generator of this group, & = 1% J6) oo’ Represent the

result by the X, Y, px, p yoperators. [Hint: this is of course related to the angular momentum]

(©). (3pts) Consider the 2D harmonic oscillator, H = ;-@2 +p2)+ ™(2 + 42 ). Here
m, @ are positive constants. It can be viewed as the sum of two independent harmonic

oscillators, H = (-2% + ma;xﬁ) + (Zﬁ‘jn + Lﬁ’;yz). The ladder operators for the x- and

! e~ i - P - . -
y-components can be defined as Dx = F X+ ep) ad b, = 7Y+ ep ) They

satisfy the commutation relation of boson annihilation operators, [’i?x, bt 4 = [By, Al@’f] =1,
[Bx, BL] = [Abx, b y] = 0. Denote the unique normalized ground state of H by |vaci, then

bx|vaci = by|vaci =0. Write down all eigenvalues and normalized eigenstates of H .

(d). (Bpts) Rewrite the L in (b) in terms of the ladder operators in (c). Show that

[H,L,]=0. {Hnt we [AB, CD] =A[B, C]D +[A, C]BD + CA[B, D] +C[A, D]B. }

(e). (3pts) The ‘“raising” operators bL and bL form basis of a 2-dimensional rep-

resentation of the SO(2) group. g(6) transforms them to their linear combinations,
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Homework #4:
Brief Solutions

1. On 2-dimensional space with real coordinates (z,y), define position eigenstates |z, y)
with |z, y) = x|z,y) and g|z,y) = y|x,y) and normalization (z,y|2’,y’) = d(z—2")d(y—v/);
and momentum eigenstates |p,, py) With p|ps, py) = PulPe, py) and py|ps, py) = Dy|Ds, py) and
normalization (p., py|pl, ) = 6(p2 — Pl)0(py — P})-

Here [z, p.] = [9, py] = 1h, and other commutators between them are zero.

The rotations around the origin form the SO(2) group. Denote the counter-clockwise
rotation of angle 6 by ¢(#), which maps the point (z,y) to (x cosf —ysinf, zsin +y cos ).
It is easy to check that g(6) - g(¢') = g(# + 60" mod 27), so this is an Abelian group.

(a). (2pts) The unitary operator for g(6) is
g/(—e\) = [dx [dy|zcosd — ysinb,zsing + ycosf)(x,y|. Compute the matrix element of

— —

g(#) under the momentum eigenbasis, (p/,, p;|9(0)|pz, py)-

(b). (2pts) Compute the generator of this group, L, = [ﬁg—eg(@)hzo. Represent the

result by the 2.y, p,, p, operators. [Hint: this is of course related to the angular momentum]|

(c). (3pts) Consider the 2D harmonic oscillator, H = 5= (P2 + p2) + mTﬁ(fﬂ + 4%). Here

m,w are positive constants. It can be viewed as the sum of two independent harmonic

A~ ~ ~ 52 ~
oscillators, H = (% ety (2 + %2142) The ladder operators for the z- and
y-components can be defined as b, = V22 (2 + —=p,) and by, = /(5 + —-p,). They

satisfy the commutation relation of boson annihilation operators, [b,,bl] = [Isy,l;L] =1,
[l;a;,gz,] — [bs,b,] = 0. Denote the unique normalized ground state of H by |vac), then

by|vac) = by|vac) = 0. Write down all eigenvalues and normalized eigenstates of H.

(d). (3pts) Rewrite the L, in (b) in terms of the ladder operators in (c). Show that
[H,L.] = 0. {Hint: use [AB,CD] = A[B,C]|D +[A,C|BD + CA[B, D] + C[A, D]B. }

(). (3pts) The “raising” operators bl and ZA)L form basis of a 2-dimensional rep-

resentation of the SO(2) group. ¢(#) transforms them to their linear combinations,
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(d(G)bLé(G)T G ?](9; )=(b}, Bt) R[g(6)]. Solve this 2 X2 representation matrix Rg(6)].
Check that R[g(6)] - R[g(")] = R[g(6 + ).

(0. (5pts) The Abelian group SO(2) has only 1-dimensional(l-dim’ 1) irreducible
representations(irrep.). We can make two orthonormal linear combinations of E)Ly which
are 1-dim" lirrep. of SO(2). Namely there are (E)T , be)Z: (AbT,, AbL) - U, where U is a constant

Ri[g®] 0

2 X 2 unitary matrix, so that (g(b)b bf@) T, é(@)‘bi &(G)T) = (E’T, B) - )
0 R[g(0)]

. . . 13 . ” 1. N
and Ri.[g(0)] are two 1-dimensional(l X 1) representation “matrices’ . Solve bu 1n terms

of Ab(,L (or equivalently solve U), and Ri2[g(0)]. Rewrite H and & in terms of Abﬁz and 51)2.

(2). (Bpts) With previous results, write down the simultaneous eigenstates of H and IC,

| H = ES =1, 1in terms of |vaci and ladder operators. What are the possible eigenvalues
E and 7

(h). (5pts) Define two hermitian operators S« = Eﬂﬁ)z +5§;91 and & = —il; {bz + ibA ;bl.
Check that [H, &x] = [H, €] = 0. Compute the commutators [, &, [5, &, [E, &,
represent the results in terms of linear combinations of L%yz.  [Side remark: SO(2) has
only 1-dim" 1 irrep., but H has degenerate eigenvalues. In fact H has a larger non-Abelian

symmetry. Lhe %,2 are generators of this symmetry group and commute with H N

Solution:

(@ hx, ylp, pi= %ei(l’xﬂpyy)/h.

I;FhenRg(G)lpx, pi= dx dy&O)lx yihx, ylps, pyi
= dx dylxcos 6 — ysin 6, xsin 6 + ycos 6Oi - E#ei@)ﬁpyw/h,
Change the dummy variables to 2® = xcos @ —y sin 6 and y° = xsin 6+y cos 6, or equivalently
x=2x0cos O+y'sin Band y = —x sin O+ Yy cos 6, the Jacobian of this variable change is unity,
_0(x,y) _ _
|6(x0,y0) | - |d€t — sin G-.cos O | =1

i i 1 i([(px cos 6—py sin 6)x° s O+ px sin O)y’]/h
d(e)lp)cpg) = dx dy(] |X0, yOI ,ﬁe([(p cos 8—py sin O)x’+(py cos B+px sin Y°]/

cos © sin 6

= | pxcos O — pysin O, pxsin O + py cos Bi is a momentum eigenstate.

hpox;poy‘fﬂ)‘pxi pyl = 6(pox - (pxCOSQ_pySiH 9)) ’ 6(p0y - (pxSin9+pySiH 9))
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(g/(\ﬁ)glg/(\Q)T7 g/(\G)IA)Lg/(\@)T) = (b}, ZSL) - R[g(0)]. Solve this 2 x 2 representation matrix R[g(f)].
Check that R[g(0)] - Rlg(0")] = R[g(0 + 0)].

(f).  (5pts) The Abelian group SO(2) has only 1l-dimensional(1-dim’l) irreducible

representations(irrep.). We can make two orthonormal linear combinations of bt . which

T,y
are 1-dim’l irrep. of SO(2). Namely there are (bl, bb) = (b, [}L) .U, where U is a constant
it ot o [Ri[g(8 0
2 x 2 unitary matrix, so that (g(0)blg(0) , g(0)blg(8) ) = (bl, b}) - 1lg(0)] ’
0 Relg(9)]

and Rj»[g(0)] are two 1-dimensional(1 x 1) representation “matrices”. Solve (A)IZ in terms

of Ely (or equivalently solve U), and Ry »[g(6)]. Rewrite H and L. in terms of 1312 and by ,.

(g). (3pts) With previous results, write down the simultaneous eigenstates of H and z\z,
|ﬁ =L, E: = (), in terms of |vac) and ladder operators. What are the possible eigenvalues

E and ¢7

(h). (5pts) Define two hermitian operators L, = biby + biby and f/; = —iblby + 1blby.
Check that [ﬁa] = [H, z;} = 0. Compute the commutators [Z\T,Z;} [Z;z:} [Z: Z;},
represent the results in terms of linear combinations of L;; .. [Side remark: SO(2) has
only 1-dim’l irrep., but H has degenerate eigenvalues. In fact H has a larger non-Abelian

symmetry. The L/m; . are generators of this symmetry group and commute with H ]

Solution:

(a) (2, y[pe, py) = sageP=rtro)/h,

Then g(6)|pa, py) = [ da [ dy g(0)l, y){x, ylpz, py)
= [dz [dy|zcosf — ysin6, xsind + ycos ) - 5= e Pretrow)/h,
Change the dummy variables to ' = x cos —ysin 6 and 3y’ = x sin 0 +y cos @, or equivalently

x =2a'cosf+y sinf and y = —a' sin 0+1vy' cos #, the Jacobian of this variable change is unity,
| O(z,y) | _ |det (cos@ sin9> I -1

A"y’ —sinf cosf

.g/(\0)|px;py> — f dz’ f dy/ |ZL'/, y/> . ﬁeﬁ([(pz cos 0—py sin 0)z’+(py cos O+pg sin 0)y'] /R

= |py cos O — p,siné, p, sin 6 + p, cos @) is a momentum eigenstate.

—

(s 2y 9(0) P2y py) = (Pl — (P2 cos O — pysind)) - 6(py, — (P sinf + p, sin0))
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= &6(px = (P cos O + p,sin 0)) - 8(py ~ (=P sin O + pP, cos 6)).

(b) Method #1:

It 1l be most clear to consider the action of é( 0) on a generic state |wi with wavefunction
wx, y) = hx, gl 28 R R

§O)lpi = dx dy&O)|x yihx, ylyi= dx dy|xcos O-ysin 6, xsin O+y cos 61 w(x, y)
= i dxd R dy? [x9, y"i w(>d cos O + YO sin B, —x sin O + yO cos H).

Therefore the action of g(@) on wavefunctions Ww(x, y) is

&é Doy 7o w(xcch%9+y§1n9 -xsin 6 + y cos 0).

So the action of E 18

6=0
ﬁ’ D (% Y) 71 %5 p(xcos O + ysin 6, —xsin 6 + y cos 9) o0 = i[U& —xg—y]lp(x, Y.

69

Compare this with the actions of X,y ,p x,Py, we have b= %q[ - ypx

Method #2

Fé(e) dx dydxcos 0 - ysin 6, xsin 0 + y cos Bihx, y|
= dpx dpy - de dy |px pyihpx, pylxcos 6 - ysin 6, xsin 6 + y cos 6

R
e—iPx(xcos -y sin )—i Py(xsin O+y cos 6)
= dpx dpy  dx  dy|pe Py 2k hx, yl.
. e(—ipxx—ipyy)/h
Here we have used hpx pydx, yi= — 75—

Noﬁzv only t?e numerical F{actor involves 6, take derivative with respf§tx‘[_9 9),/h_
GO = P APy dX dYIPap JEPY P S iy
= dpx dpy dx dylpepdi S(-py+p Ohpspdx yi hxyl.
Co&npar% this with the diagonal form of pr,ghand X,y operators,
prE dgx dpy | px pyip:hps, pﬁl, pAyR= dpx  dpy |px Dyipyhps, pyl, and
x= dx dylxyixhxyl,y = dx dylx yiyhs, yl.

zZ

Wehave B, = Lp 4 +pyX).

© H=ho -(bhbet bl B +1)=he - (Ax+ Ay +1). Here ix = bt b and Ay = bt b
The eigenvalues are Evn, = Ro - (ne+ ny + 1), with normalized eigenstate

|nx:nx,ny = nylz

(@)”x(@)”ylvac1 Here n., ny are non-negative integers.

lny

(d)

Advanced Quantum Mechanics, Fall 2017 3/9



= §(p. — (p. cosO +p;j sind)) - d(p, — (—p/, siné +p;j cosf)).

(b) Method #1:

It’ll be most clear to consider the action of g(f) on a generic state |¢)) with wavefunction
U(x,y) = (z,yl).

g/(\9)|¢> = fdxfdyg/(\ﬁﬂx, Y)Yz, ylY) = [de [dy|zcos@—ysinb, xsin+y cos ) (x,y)
= [do’ [dy |2, y) Y (2 cos O + ' sin, —a'sin 6 + ¢ cos ).

Therefore the action of gXO\) on wavefunctions ¥ (z,y) is
gXH\) o Y(x,y) = Y(xrcosb + ysinh, —xsinf + ycosh).

So the action of L, = [ﬁ%g@]e . is

—_

seo = 15 — 25 J0(x, y).

[ﬁ%g/(y)} D (x,y) ﬁ% (xcosl + ysinfh, —xsinf + y cosh)

Compare this with the actions of Z,7,p,,p,, we have L, = %[:i;ﬁy — YPg ).

Method #2:
g/(\@) = [dz [dy|zcos® —ysinb, zsind + y cos ) (x, y|

= [dp, [dp, [ dz [ Ay |ps, Dy) (Dss Dylx cOsO — ysind, xsin b + y cos 6)

—ipg-(x cos @—ysin §) —ipy - (x sin O+y cos H)
= fdprdpy fdilj'fdy |px7py>e = L 2rh o d <5C:y‘
(—ipgx—ipyy)/h
Here we have used (p,, py|z,y) = %

Now only the numerical factor involves 6, take derivative with respect to 6,
~ La = e(—ipzz—ipyy)/
L, = [n%g(@)] o™ [dp, [dp, [dz [ dy|ps,py) <%(—pmy—{—py1‘) . Th> (x,y
= [dp. [dpy [dz [ Ay |pe, py) (5 (=Pey + py)(Pas Dyl 7, 1)) (2, 9],

Compare this with the diagonal form of p,, and 2,y operators,

Pe = [ dpe [ dpy P2, Dy) P2 (P2, yl, Dy = [ dps [ Apy [Pz, Py)Py (P, Py, and
&= [de [dyl|z,y)a(z,y|, § = [dz [dy|z, y)y(z, yl.
We have L, = L(=p,9 + p,&).

(¢) H = hw- (blb, + l;;l;y +1) = hw - (g + Ny + 1). Here fiy = bib, and n, = i)Ll;y

The eigenvalues are £, ., = hw - (ny + ny, + 1), with normalized eigenstate
Ny = Mg, Ny = ny) = nl'n -(D1)"= (b})"|vac). Here ng,m, are non-negative integers.
z Ty

(d)
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a4 a__ G a_
Use X=  52(B+B) Y= ss(h+H), o = TN be— k), py = —i "3 (by— bt
bz _ _i‘bL‘by -|-if9TyE)x.

Use [H, be] = —Rok.[H h]=—Rob,[H k] =+hob, [H, H] = +Fob),

[H, bt h1=[H, & j + bt [Hp 1=Rabt yb —bt - Apb =0, and similady [H, bt p 1=0
Therefore [H, y-)/z] =

PIn fact, the coinmut'iltor of Igreatioil/annihﬂation oPerator biliPears i?D stﬂ} a bilineaf,

P Q@D = k(BB GO — B OB Pyb) = - BIP, QDeb

Here [P, Q] = P - Q- Q - P is the commutator of the coefficient matrices. Then

[HBi=Ro - [a +7y,-ibbyribBlefio - (biby- | : ST B" = 0.
y

(e) Method #1:

Consider the action of (g%é)fc‘g(@f) ) on position basis | x, yi, note that @T = g(cb),
@ )|;C, yi =) x| x cos O+ ysin 6, —xsin 0+ ycos O
= g‘(@)(xcos O+y sin B)|xcos B+y sin 6, —xsin O+y cos Oi = (xcos B+y sin O)|x, yi. Therefore
(ﬁ&ﬂ )T: xcos 6 + y sin 6.

Similarly one can show that (g(é) y g(b) )T: —-x sin@+y cos 6.

Consider the action of (g‘( 0) ﬁ,yé(G)T) on momentum basis | px, pyi, and use the result of
(), one can show that (g(65p g6d)) :TpA cos 0+p” sin 6, (9(p b)) T: —p xsin 6+ p ycos 6.

Then by the definition of bt Ly, we have

cos & —sin O cos 6 —sin O

KOB&0) , §08%6) )= 0L, B . Namely, R[g(6)] =

sin 6 cos 6 sin 6 cos O

Method #2:

Use é( 0) = exp( —iGQz), and the Baker-Hausdorff formula.
Use the result of (d), [Jbz, B(] = iBT, [Ez, bL] = —ibL By mathematical induction,

@ﬂf .{P#ﬂ.unz B, n=2m

n-fold commutator

~ 'bf’ _ .
igﬂﬁﬁiﬂ%pnnuz l, n=2m;

~ibl, n=2m+ 1.

ibl, n=2m+1.

n-fold commutator

t o] Poo P . 3
JOBLO) = oy G (i Bt sy Gy (—i6) ™ B =c0s @ - bhtsin6 - b,
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Usea&:,/i(i) +01), G = 1/ 5 (b, + b)), P = —iy/ ™8 (b, —bD), B, = —iy/ "L (b, — b))

~

L, nbrby +ibib

ylx:

A~

Use [H,b,] = —hwb,, [H,b,) = —twb,, [H,bl] = +hwbi, [H,b] = +hwb],

[H,bb,] = [H,bl]b, + bi[H,b | = hwbl - b, — bl - hw b = 0, and similarly [H,b}b,] = 0.

Therefore [H, L.] = 0.

In fact, the commutator of creation/annihilation operator bilinears is still a bilinear,
[szb;rngbyzk,e ZSLQMBA - Zi,j,k,z(i);’rpijdijkfI;E - BIJLQM(S Pljb]) - Z@',e IA’I([R Q])iéi’z-
Here [P,Q] = P-Q — @ - P is the commutator of the coefficient matrices. Then

01 i 0

o U , b
[H,L.] = tw - [fi, + fy, —1bib, +1bib,] = fw - (BT, 05) - [ ( 0) , (0 ‘“) -7 ] =0

(e) Method #1:

Con51der the action of (g (Q)xg(é’)T) on position basis |z, y), note that g/(H\)T = g(—0),
(g(@) ( ) Mz, y) = g( )Z|z cos @ + ysinf, —z sin 6 + y cos )
= g/(-\e)(% cosf+ysinf)|x cos0+ysin @, —x sin@+y cos ) = (x cos §+ysin )|z, y). Therefore
(@Q@T) =2 cosb + ysinf.

Similarly one can show that (g/(\ﬁ)g]g/(\Q)T) = —Zsinf + g cosb.

Consider the action of (g (G)pm yg(G) ) on momentum basis |p,, p,), and use the result of

(a), one can show that (g (Q)pxg(G)T) Dy cos@+p,sind, (g (G)pyg(é’)T) = —p,sinf+p, cosb.

Then by the definition of b} 4+ we have
ot e ot oL o cosf —sinf cosf —sinf
(9(0)bLg(0) , g(0)blg(0) ) = (b}, b)) | - Namely, R[g(0)] = |
sinf cos6 sinf) cos@

Method #2:
Use g/(\ﬁ) — exp(—1i0L.), and the Baker-Hausdorff formula.
Use the result of (d), [L.,bl] = an [L.,b] = —ib!. By mathematical induction,

zZy Yy Zuy

~ - bl n=2m;
\[Lz,[L L] =

n-fold commutator

ibl, n = 2m + 1.

bL, n =2m,;
2 Yy

[Lz,[L o [La, b)) = .
h —an n =2m + 1.

n-fold commutator

St
g(@)big0) = >, (2m),( 10)2mbl 4 32> m i(— 116’)2m+1bT — cosf - bl +sinf - bT
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t ~ ~
and gf@)bw(e) = 0 (Zm)' —i6) mbLJr =0 m(—i)(—i@zmﬂ bl = cos - bt,—sin 8- bt

R[g(0)] - R[g(6")] = R[g(6+ 6] can be easily checked using the trigonometric identities,
cos Bcos 69 — sin Bsin B° = cos(O + &), cos Osin 6° + sin B cos B° = sin(6 + O).

(f) Method #1: direct diagonalization of R[g(6)],
R(g(0)] has eigenvalues e® and €®, with right-eigenvectors 1 and & ,

respectively.
1

1 1 ~ o
U= 7; ) , hamely bI: ’V%(bi-}-ibfy), bt = ‘}E(bl—ibz),

And Ri[g(0)] = e, and R{g(0)] = €.
AdH=ho - (bthtbtdor1), B, =bth + btd,

Method #2: use “projection operator”
The SO(2) group has 1-dimensional irreducible representations(irrep), R {g(6)] = e ™,
labeled by integer n. Try to  “project” the basis i)}‘gy onto this irrep,
- (bl—I—ii)L, n=1;
(B — i), n=-1;
otherwise.
- (@ —ibl, n=1;
Géne-(‘écosO—‘l;csinG): n:-(@+ibl), n=—1;

0, otherwise.

P | Ry, |
geso) (Rilg) "~ bbb' = o2 6™ - (B cos O+ b sin 6) =

o J

P % : R 2
geso) (Ri{g)) "~ bb" =

Then one can see the basis for n =1 irrep 1s proportional to (Ab’sc + ibL), for n=—1 irrep
18 proportional to (b;rc — ibL). And this 2-dimensional representation does not contain other

1rreps.

You may have switched the definitions of b 1 and Abz , then just exchange the subscripts 1

and 2 in the above results.

(¢) Defineni = bJ{b1, ny = BSb, Then ln1=ni,n2 =mi= m.n,(h)nl(bz)nzlvacl is

the simultaneous eigenstate of H and b 2, with eigenvalues E=h o - (n1 + n2 + 1), and
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— . ——1 N “ A N
and g(0)b}9(0) = Sovo oy (—0)2" b} + 325 ey (—) (=618 = cos0-b) —sin 6-51.

m=0 (2m)!

R[g(0)] - R[g(0")] = R[g(0 + ¢')] can be easily checked using the trigonometric identities,
cosf cos@ —sinfsin @ = cos(6 + '), cosfsinf’ + sinf cos§’ = sin(f + ¢').

(f) Method #1: direct diagonalization of R[g(#)],

R[g(0)] has eigenvalues e and €', with right-eigenvectors

Sl
o
=
a

Sl-

respectively.

(11 ot 7
U:ﬁ - , namely b} = —=(b]

And R;[g(0)] = e ¥, and Ry[g(0)] = €'“.
And H = hw - (blb, + bib, + 1) L. = bib, — bib,.

?

Method #2: use “projection operator”,
—inf

The SO(2) group has 1-dimensional irreducible representations(irrep), R} [g(0)] = e~ ™7,
labeled by integer n. Try to “project” the basis I;Ly onto this irrep,

m- (bl +1'1l3£), n=1;
2 _geso (Balg))® - ghigt = fo% d6 et . (b} cos 0 + BL sinf) =< - (b — ]'lA;L)’ n=—1;
0, otherwise.

\
/

- (IA)L —ibl), n=1;
AT % 1 g (G S R
Y gesor(Bulgl) - gblgh = [77 A0 e - (bf cos§ — bl sinf) = ¢ 7 (bf +1ibl), n=—1;

0, otherwise.
\

Then one can see the basis for n = 1 irrep is proportional to (IA)IC + ]'11;;), for n = —1 irrep
is proportional to (l;;fc — ﬁZA)L). And this 2-dimensional representation does not contain other

irreps.

You may have switched the definitions of b, and 52, then just exchange the subscripts ;

and , in the above results.

(g) Define fy = blby, 7y = blby. Then |fy = ny,fy = ny) = \/"11!72!(51)”’1(13;)"2\\/ac> is

the simultaneous eigenstate of H and EZ, with eigenvalues £ = hw - (ny + ng + 1), and

?
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"= (rmu — rw). Here nu,» are non-negative integers.

(h) Use the commutator formula for bilinear operators in (d), these three operators satisty
the commutation relation of Pauli matrices.

[Ex; by] = 21@12, [Dy,bz] = 21@,,(, [P,Z,Ex] = 21%.

If you have switched the definitions of b and bz in (f), this would be [ B, B, 1= —2iB.,
B,,B,1=-2b,, (B, B,)=-2ib,

2. Considered H = (]‘:If:z+f:;rr]‘:3+f:;rfi +]¢:I I +h.c.).
Here ﬁ(ﬁ) are annihilation(creation) operators for 4 fermion modes, satisfying {ﬁ‘, ]:j'} =06y
and {f is f 7} =0, and h.c. means hermitian conjugate of the previous 4 terms.
The model conserves total particle number n = 1_1 fl f ; namely [H n]=0.
H also has the D: point group symmetry, generated by
“4-fold rotation”  Ci 11 f —:2f —:gf —>;f - 3f, (this means 90? 1@:4T = ﬁ, etc.), and
“principal axis reflection”  Os: f 1= f 1:f 2 f 4,f 3= f 3.
This group has 8 elements, and 5 conjugacy classes: { 1}L,{Ci, G}, { G}, {os, Cios},{oa =

Ci0s, Ci 0s}. The character table for the five irreducible representations, 12545, is
12C Cﬁ 20s 204

11 1 1 1
-1 1 1 —-1-1
[s1-11 1 —1
[+ 1-11-11

[s2 0 =20 0

(a) (Opts) A group element g € Di will transform f i as S i 7- P ¥ fJ R[g}i, where
R[g] is the 4 X 4 rlgpresentatlon matrix. Decompose this into irreducible representatlons
Namely find ﬂz = f} Ui, Where Uiisad x4 unitary matrix, so that ﬂz transform
under g € Ds as f“l 7~ j ﬂ ;- Rl[gli with R'[g] block-diagonalized, and each diagonal
block 1s one of the irreducible representations. Solve the new basis ]:UI in terms of f j (or

equivalently solve U), and the block-diagonalized representation R¥[g] for the generators
g=C and g = 0s. [Hint: use the “projection operator” to find the new basis]
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{ = (ny —ny). Here ng o are non-negative integers.

(h) Use the commutator formula for bilinear operators in (d), these three operators satisfy
the commutation relation of Pauli matrices.

(L., L,) = 2iL., [L,, L.] = 2iL,, [L., L,] = 2iL,.

If you have switched the definitions of b; and b, in (f), this would be [L,, Ey] = —2iL,,
[L,,L.] = —2iL,, [L., L, = —2iL,.

2. Considered H = (f{ fo + f3fs + fifs+ I/ +hc).
Here f;(f!) are annihilation(creation) operators for 4 fermion modes, satisfying { f;, f; } =6
and {f;, fj} = 0, and h.c. means hermitian conjugate of the previous 4 terms.

The model conserves total particle number 7 = Z?:l f;T i, namely [H, 7] = 0.

H also has the D, point group symmetry, generated by
“4-fold rotation” Cj : fl — fg — fg — f4 — fl, (this means @f@f = fg, etc.), and
“principal axis reflection” o, : fl — fl, fg < f4, fg — fg.
This group has 8 elements, and 5 conjugacy classes: {1}, {Cy, C3},{C3}, {04, Cios}, {04 =

Cyo,,C30,}. The character table for the five irreducible representations, 2345, 18

1|12C,|C% (204|204
r{rp1j1]17]1
ol 1|1 |—1]-1
Dol1l=1]1]1|=1
=11 ]=1]1
5020 0 =2, 0] 0

(a) (5pts) A group element g € D, will transform f/ as fi > ij - R[g];i, where
Rlg] is the 4 x 4 representation matrix. Decompose this into irreducible representations.
Namely find f’j = Ej f} - Uji, where Uj; is a 4 x 4 unitary matrix, so that f’: transform
under g € D, as f’j =D f’; - R'[g];; with R'[g] block-diagonalized, and each diagonal
block is one of the irreducible representations. Solve the new basis f’j in terms of )‘:J (or
equivalently solve U), and the block-diagonalized representation R'[g] for the generators

g =Cyand g = o,. [Hint: use the “projection operator” to find the new basis]
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(b) (5pts) The Hilbert space with fixed total particle number n is a representation space

of the D» group. Assume that the vacuum state | vaci is invariant under D: group. Then the
transformation rules for f;r completely determine the transformation rules for any states,
for example C: transforms f b ]f Jrrj vaci 7— f;f f "l vaci. Decompose the 6-dimensional 2-particle
Hilbert space, with occupation basis f ¥ ]CJA~Jr |vaci for i <, into irreducible representations
of Di.  [Hint: one can first work out the 6 X 6 representation and then change basis to

block-diagonalize it; or use the result of (a) to construct the irreducible representation

basis]

(c) (4pts) Rewrite H in terms of the ]:UI and ]20 i solved 1n (a). Solve all the eigenvalues

and eigenstates of H in the entire Fock space.

Solution:

(a) Check the updated Lecture Notes #4 for a similar problem.

The basis can be chosen as

irrep. RO basis R[C)] RJos]
oo A =TI s ) 1 1
. A =ri=" -l -1 -1 1
. 0-1 10
A S i WA I e )
1 0 0-l

The procedures of using “projection operator” are summarized in the following tables,

Advanced Quantum Mechanics, Fall 2017 7/9



(b) (5pts) The Hilbert space with fixed total particle number 7 is a representation space
of the D4 group. Assume that the vacuum state |vac) is invariant under D, group. Then the
transformation rules for ﬁ completely determine the transformation rules for any states,
for example Cy transforms f] fi|vac) — fi filvac). Decompose the 6-dimensional 2-particle
Hilbert space, with occupation basis fjfj lvac) for i < j, into irreducible representations
of D,. [Hint: one can first work out the 6 x 6 representation and then change basis to

block-diagonalize it; or use the result of (a) to construct the irreducible representation

basis|

(c) (4pts) Rewrite H in terms of the f’j and f. solved in (a). Solve all the eigenvalues

and eigenstates of H in the entire Fock space.

Solution:

(a) Check the updated Lecture Notes #4 for a similar problem.

The basis can be chosen as

irrep. R'|basis R[Cy |Roy]
AT A4 N A N -

T =t =L+ A+ i+ (1) (1)
T et s » A, A,

Ty o=t =LA -+ -7 (_1) (1)
b At o R 0—1\[{1 O

I (fry=TL, =L(f - ), fu=TL, =LA~ fD) ol

The procedures of using “projection operator” are summarized in the following tables,
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