Instrumentation and Control system *Lecture 10*

Sanghyuk Lee Department of Electrical and Electronic Engineering, Xi'an Jiaotong-Liverpool University (XJTLU)

> **Contact information :**

Instrumentation and Control system EEE 220

Contents

- *Experimental and theoretical determination of frequency response with phase margin and gain margin.*
- **Stability analysis using Bode plot, and Nyquist stability** *criterion.*
- *Controller design using frequency response method, Phase-lead and Phase-lag controls.*
- *Fullstate feedback control design.*

$$
L(s) = \frac{100}{(s+1)(0.1s+1)}
$$

Number of poles of $L(s)$ in the right hand s-plane is zero, thus $P = 0$, therefore system is stable. We require $N = Z = 0$, and contour must not encircle $(-1,0)$ point in $L(s)$ -plane.

$$
L(s) = \frac{K}{s(ts+1)}
$$
, Poles of $L(s)$ at origin and $-1/\tau$.

- 1. Origin of s-plane, $\omega = 0$ to $\omega = 0_+$
- 2. Portion from $\omega = 0_+$ to $\omega = +\infty$
- 3. Portion from $\omega = +\infty$ to $\omega = -\infty$
- 4. Portion from $\omega = -\infty$ to $\omega = 0$

 $P = 0$ within RHP \rightarrow stable $\rightarrow N = Z = 0 \rightarrow \Gamma_L$ must not encircle the (-1,0)

Angle of $L(j\omega)$ is always -180^o or less, and the locus of $L(j\omega)$ is above

1. As
$$
\omega
$$
 approaches to 0₊
\n
$$
\lim_{\omega \to 0+} L(j\omega) =
$$
\n
$$
\lim_{\omega \to 0+} \left| \frac{K}{\omega^2} \right| \angle -\pi
$$

- 2. As ω approaches to $+\infty$ $\lim L(j\omega) =$ $ω→+∞$ lim $ω→+∞$ $\left| \frac{K}{\omega^3} \right|$ $\angle -3\pi/2$
- 3. At small semicircular detour at the origin, where $s = \epsilon e^{j\phi}$ $\lim_{\omega} L(j\omega) = \lim_{\omega}$ $\varepsilon \rightarrow 0$ $\varepsilon \rightarrow 0$ \boldsymbol{K} $\left| \frac{\partial^2}{\partial \xi^2} \right| e^{-2j\phi}$

$$
-\pi/2 \leq \phi \leq \pi/2
$$

$$
L(s) = \frac{K}{s^2(\tau s + 1)}
$$

$$
L(j\omega) = \frac{K}{-\omega^2(j\omega\tau + 1)} = \frac{K}{[\omega^4 + \tau^2 \omega^6]^{1/2}} \angle -\pi - \tan^{-1}(\omega\tau).
$$

Stability and Nyquist Criterion

- Relative stability related with relative settling time of each root or pair of roots.
- System with a shorter settling time is considered more relatively stable.

- Nyquist Criterion provides suitable information concerning absolute stability and relative stability
- 1. Focussing on $(-1,0)$ point on the polar plot, 0 dB and -180° point on Bode diagram
- 2. Clearly, $L(j\omega)$ locus to this stability point is a measure of relative stability. [Gain Margin and Phase Margin]

• Consider
$$
L(j\omega) = \frac{K}{j\omega(j\omega\tau_1 + 1)(j\omega\tau_2 + 1)}
$$

- As K increases, polar plot approaches the (-1,0) point. Eventually, encircles the (-1,0) point for a gain K_3 .
- Locus intersects the *u*-axis at a point $u = \frac{-K\tau_1\tau_2}{\tau_1+\tau_2}$ (c.f Example 9.5) $\tau_1+\tau_2$
- It means that system has roots on j ω -axis when $u = -1$.
- As K decreased below this marginal value, stability increased. Margin between $K = \frac{\tau_1 + \tau_2}{\tau_1 \tau_2}$ and $K = K_2$ is the relative stability[Gain Margin]
- Reciprocal of the gain $|L(j\omega)|$ at the frequency at which the phase angle reaches −180°.

Stability and Nyquist Criterion(Conti.)

• Consider
$$
L(j\omega) = \frac{K}{j\omega(j\omega\tau_1+1)(j\omega\tau_2+1)}
$$

- Gain Margin is the factor by which the system gain would have to be increased for the $L(j\omega)$ locus to pass through the u = -1.
- For gain $K = K_2$, gain margin is equal to the reciprocal of $L(i\omega)$ when $v = 0$.
- $\omega = 1/\sqrt{\tau_1 \tau_2}$ when the phase shift is -180° , we have a gain margin equal to 1 $L(j\omega)$ $=$ $\left[\frac{K\tau_1\tau_2}{\sigma}\right]$ $\tau_1+\tau_2$ d 1 \boldsymbol{d} -1 1 $=\frac{1}{d}$, 20 $\log \frac{1}{d} = -20 \log d \ dB$
- The Gain Margin is the increase in the system gain when phase = -180° that will result in a marginally stable system with intersection of the -1+*j*0 point on the Nyquist diagram.
- The Phase Margin is the amount of phase shift of the $L(j\omega)$ at unity magnitude that will result in a marginally stable system with intersection of the -1+*j*0 point on the Nyquist diagram.

Relationship Gain and Phase Margin

Critical point (-1,0) point in the $L(j\omega)$ –plane is equivalent to 0 dB and 180° on Bode diagram

Consider
$$
L(j\omega) = \frac{1}{j\omega(j\omega+1)(0.2j\omega+1)}
$$

- The phase angle when 0 dB is equal to -137°
- Thus phase margin is $180^\circ - 137^\circ = 43^\circ$
- Magnitude when the phase angle is -180° is -15 dB
	- Therefore gain margin is 15 dB
- Magnitude Phase diagram is followed.

Relationship Gain and Phase Margin

Time domain and Frequency domain Criteria

- In Unity feedback case, relation between maximum magnitude and frequency ω_r determined by M circle.
- For $T(j\omega) = \frac{G_c(i\omega)G(j\omega)}{1 + G_j(j\omega)G(j\omega)}$ $\frac{G_c(i\omega)G(j\omega)}{1+G_c(j\omega)G(j\omega)}$, let $G_c(j\omega)G(j\omega) = u + jv$, then $M(\omega) = \left| \frac{G_c(i\omega)G(j\omega)}{1+G_c(j\omega)G(j\omega)} \right|$ $\left. \frac{G_c(i\omega)G(i\omega)}{1+G_c(i\omega)G(i\omega)}\right| = \left| \frac{u+jv}{1+u+j} \right|$ $1+u+jv$
- Squaring and arranging

$$
(1 - M^2)u^2 + (1 - M^2)v^2 - 2M^2u = M^2
$$

Finally,
$$
\left(u - \frac{M^2}{1 - M^2}\right)^2 + v^2 = \left(\frac{M}{1 - M^2}\right)^2
$$
, centered at $u = \frac{M^2}{1 - M^2}$ and $v = 0$

- Several constant M circles. Left of $u=-1/2$ are for $M>1$, and the circle to the right of $u=-1/2$ are for $M<1$.
- When $M = 1$, the circle es the straight line $u=-1/2$.

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如 要下载或阅读全文,请访问:[https://d.book118.com/52531430132](https://d.book118.com/525314301321011033) [1011033](https://d.book118.com/525314301321011033)