

A Knowledge ne for the Inte

David D. Clark*, Craig Partridge♦, J. Christopher Ramming
†
and John T. Wroclawski*

*M.I.T Lab for Computer Science

200 Technology Square

Cambridge, MA 02139

{ddc,jtw}@lcs.mit.edu

♦ BBN
10 Moulton St

Cambridge, MA 02138

craig@bbn.com

†SRI International

333 Ravenswood Avenue

Menlo Park, CA 94205 USA

chrisramming@yahoo.com

transparen work with rich end-system functionality, and the

deeply embedded assumption of a decentralized, multi-

administrative structure are critical strengths, but lead to frustrated

users when something fails, and high management overhead with

mu anual configuration, diagnosis and design.

Both user and operator frustrations arise from the same fundamental

design pr iple of the Inte —the simple and transparent core

with in ligence at the edges [1,2]. Th work carries data

without knowing what that data is, or what its purpose is. If some

combination of events is kee data from getting through, the

edge may recognize that there is a problem, but the core cannot l

that something is wrong, because the core has no idea what should

be happening. The edge understands applications, and what their

expected behavior is; the core only deals with packets. Similarly, a

network operator in cts with the core in very low-level terms such

as per-router configuration of routes and policies. There is no way

for the operator to express, or th work to model, what the high

level goal of the operator is, and how the low-level decisions relate

to that high level goal.

As we design a new sort o work, we must not lose the features of

the Inte that have made it a success—its openness to new

applications, the adaptability of its protocols, and the essential

sticity basic to its nature. Yet we must devise a technique that

marries these virtues to a new goal: the ability of th work to

know what it is being asked to do, so that it can more and more take

care of itself, rather than depending on people to attend to it. If the

network had a high-level view of its design goals and the constraints

on acceptable configurations, then it could make many low-level

decisions on its own. It could communicate with th work

designer in terms of how well it met the goals, rather than by

dis ying a mass of router configuration tables. And it could deal

with changes in the high level requirements by reconfiguring itself.

We argue that traditional, algorithmic approaches to adaptivity are

unlikely to provide the required sophistication of behavior. The

approach we take must offer the ability to and isolate high

level goals from low level actions, to integrate and act on imperfect

and ing information, and to learn from past actions to

improve future performance. These properties are precisely those

required to function effectively in the Inte 's environment of

diverse and competing objectives, decentralized control, complexity,

and dynamic change.

This paper proposes an approach t work design based on tools

from AI and cognitive systems. Specifically, we propose a construct,

We propose a new objective fo work research: to build a

fundamentally different sort o work that can assemble itself

given high level instructions, reassemble itself as requirements

change, automatically discover when something goes wrong, and

automatically fix a detected problem or ex in why it cannot do so.

We further argue that to achieve this goal, it is not sufficient to

improve rementally on the techniques and algorithms we know

today. Instead, we propose a new construct, the Knowledge ne, a

pervasive system within th work that builds and maintains high-

level models of what th work is supposed to do, in order to

provide services and advice to other elements of th work. The

knowledge ne is novel in its reliance on the tools of AI and

cognitive systems. We argue that cognitive techniques, rather than

traditional algorithmic approaches, are best suited to meeting the

uncertainties and complexity of our objective.

Categories and Subject Descriptors
C.2.1 [Computer-Communicatio works] work

C.2.3 Architecture and Design work communications.

[Computer-Communicatio works] work Operations –

network management work monitoring.

Communicatio works]: Inte working.

C.2.6 [Computer-

General Terms
Management, Measurement, Design, Experimentation.

Keywords
Cognition work applications work configuration; knowledge

ne.

1. INTRODUCTION
The Inte of today is a wonderful success. But success should not

blind us to the Inte ’s limitations. Its emphasis on generality and

heterogeneity, the 'narrow-hourglass' combination of a simple,

Permission to make digital or hard copies of all or part of this work for

al or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

SIGCOMM’03, August 25–29, 2003, Karlsruhe, Germany.

Copyright 2003 ACM 1-58113-735-4/03/0008…$5.00.

3

A Knowledge ne for the Inte

David D. Clark*, Craig Partridge♦, J. Christopher Ramming† and John T. Wroclawski*

*M.I.T Lab for Computer Science

200 Technology Square
Cambridge, MA 02139

{ddc,jtw}@lcs.mit.edu

♦BBN

10 Moulton St
Cambridge, MA 02138

craig@bbn.com

†SRI International

333 Ravenswood Avenue
Menlo Park, CA 94205 USA

chrisramming@yahoo.com

We propose a new objective fo work research: to build a
fundamentally different sort o work that can assemble itself
given high level instructions, reassemble itself as requirements
change, automatically discover when something goes wrong, and
automatically fix a detected problem or ex in why it cannot do so.
We further argue that to achieve this goal, it is not sufficient to
improve rementally on the techniques and algorithms we know
today. Instead, we propose a new construct, the Knowledge ne, a
pervasive system within th work that builds and maintains high-
level models of what th work is supposed to do, in order to
provide services and advice to other elements of th work. The
knowledge ne is novel in its reliance on the tools of AI and
cognitive systems. We argue that cognitive techniques, rather than
traditional algorithmic approaches, are best suited to meeting the
uncertainties and complexity of our objective.

Categories and Subject Descriptors
C.2.1 [Computer-Communicatio works] work
Architecture and Design work communications. C.2.3
[Computer-Communicatio works] work Operations –
network management work monitoring. C.2.6 [Computer-
Communicatio works]: Inte working.

General Terms
Management, Measurement, Design, Experimentation.

Keywords
Cognition work applications work configuration; knowledge

ne.

1. INTRODUCTION
The Inte of today is a wonderful success. But success should not
blind us to the Inte ’s limitations. Its emphasis on generality and
heterogeneity, the 'narrow-hourglass' combination of a simple,

transparen work with rich end-system functionality, and the
deeply embedded assumption of a decentralized, multi-
administrative structure are critical strengths, but lead to frustrated
users when something fails, and high management overhead with
mu anual configuration, diagnosis and design.
Both user and operator frustrations arise from the same fundamental
design pr iple of the Inte —the simple and transparent core
with in ligence at the edges [1,2]. Th work carries data
without knowing what that data is, or what its purpose is. If some
combination of events is kee data from getting through, the
edge may recognize that there is a problem, but the core cannot l
that something is wrong, because the core has no idea what should
be happening. The edge understands applications, and what their
expected behavior is; the core only deals with packets. Similarly, a
network operator in cts with the core in very low-level terms such
as per-router configuration of routes and policies. There is no way
for the operator to express, or th work to model, what the high
level goal of the operator is, and how the low-level decisions relate
to that high level goal.
As we design a new sort o work, we must not lose the features of
the Inte that have made it a success—its openness to new
applications, the adaptability of its protocols, and the essential

sticity basic to its nature. Yet we must devise a technique that
marries these virtues to a new goal: the ability of th work to
know what it is being asked to do, so that it can more and more take
care of itself, rather than depending on people to attend to it. If the
network had a high-level view of its design goals and the constraints
on acceptable configurations, then it could make many low-level
decisions on its own. It could communicate with th work
designer in terms of how well it met the goals, rather than by
dis ying a mass of router configuration tables. And it could deal
with changes in the high level requirements by reconfiguring itself.
We argue that traditional, algorithmic approaches to adaptivity are
unlikely to provide the required sophistication of behavior. The
approach we take must offer the ability to and isolate high
level goals from low level actions, to integrate and act on imperfect
and ing information, and to learn from past actions to
improve future performance. These properties are precisely those
required to function effectively in the Inte 's environment of
diverse and competing objectives, decentralized control, complexity,
and dynamic change.
This paper proposes an approach t work design based on tools
from AI and cognitive systems. Specifically, we propose a construct,

Permission to make digital or hard copies of all or part of this work for
al or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SIGCOMM’03, August 25–29, 2003, Karlsruhe, Germany.
Copyright 2003 ACM 1-58113-735-4/03/0008…$5.00.

3

a distributed cognitive system that permeates th work, that we

call the knowledge ne.

The rest of this paper is organized as follows. Section 2 describes

the concept of the knowledge ne. It contrasts this concept with

alternatives, and argues for the cognitive approach. Section 3 is a

discussion of what this construct might do for u amples of how

it can mak working better. Section 4 discusses some important

design constraints and considerations for a knowledge ne

architecture. Section 5 outlines the key challenges in our path.

2. A Proposal: the Knowledge ne
The discussion above hints at a solution in which th work has a

high-level view of what its purpose is—the goals of its designers, of

the applications running on it, and of its users. In an application-

specifi work, one approa ight be to utilize and embed such

-specific knowledge in the core design of th work, as

was done in the ephon work. But this defeats a fundamental

objective of the Inte – its ability to host a nd changing

array of applications. Rather than pleasing no one by adding “just a

little” application knowledge to the Inte ’s simple and transparent

data transport ne, a bet lternative is to devise a separate

construct that creates, reconciles and maintains the many aspects of

a high-level view, and then provides services and advice as needed

to other elements of th work. This is the knowledge ne, or

KP.

Understanding the precise best path towards this goal is a matter of

significant research, and this paper neither can nor does propose a

complete technical description of the knowledge ne. As a start,

however, we sketch certain attributes potentially central to the

success of a knowledge ne, and consider how this

differs from today’s practice. These lude:

Edge involvement: -to-end pr iple suggests that much

valuable information abou work performance originates not in

th work, but in the devices and applications that use it. This is

an inevitable and desirable consequence of the Inte ’s general-

purpose data ne. It implies, however, that much of the

“knowledge” in the knowledge ne may be produced, managed,

and consumed at or beyond the “traditional” edge of th work.

The reach of the knowledge ne is broader than that of traditional

network management.

Global : Most management systems are regional — each

operator manages the part he owns. But truly useful problem

identification may depend on correlation of observations from

different parts of th work. Not only must data from the edges be

combined with data from “inside” th work, but data from

different parts of th work may be needed to fully comprehend a

sequence of events. The knowledge ne would, ideally, be able to

extend its to the entire globa work as required.

Compositional structure: If the reach of the KP is global, at the same

time it must be designed to take account of what we may loosely call

“compositional” considerations. A most basic example is that the

KPs of two unconnecte works should be capable of merging

their and activities if th works become connected.

A corollary of the composition problem is the need to operate in the

presence of imperfect and ing information: some regions will

desire to keep date private. Mutual distrust among som work

operators and service providers, and indeed, among any parties that

jockey for economic advantage, leads directly to today’s need for

highly skilled human reasoning to deduce and mode work

behavior. The KP faces a similar problem: it cannot assume a

homogeneou work of shared objectives and shared information.

Unified approach: One might speculate that the various problems we

aim to address could most easily be solved by dist t mechanisms,

working bottom up, perhaps loosely tied together at the top. In

contrast, the KP as we conceive it is a single, unified system, with

common standards and a common framework for “knowledge”. This

unified approach is needed because real world knowledge is not

strictly partitioned by task. We suggest that the knowledge ne

should be structured similarly, based on the knowledge, not the task.

We believe that while point solutions may be easier to develop, an

integrated approach will be substantially more effective in the long

run.

Cognitive framework: The knowledge ne needs to make

judgments in the presence of partial or ing information; to

recognize and mediate s in policies and goals; to respond to

problems and attacks in better-than-hum frames; to perform

optimizations in high-dimensional environments that are too

complicated to be addressed by humans or ytical solutions; and

to automate functions that today must be carried out by rare and

highly skille work technicians. We therefore expect cognitive

techniques to serve as the foundation of the knowledge ne:

representation, learning, and reasoning that allow the knowledge

ne to be “aware” of th work and its actions in th work.

We turn now to further discussion of three ideas key to our position:

the necessity of a new construct, the desirability of a unified

knowledge ne, and the value of cognitive tools.

2.1 Why a New Construct?
Most discussions o work architecture recognize two

architectural divisions, or nes: a data ne, over which content is

forwarded, and a control or management ne, which is used to

direct, measure, and repair the data ne. By talking of a

“knowledge ne” we are saying a fundamentally new construct is

required, rather than fitting knowledge into an existing ne

(presumably the management ne). Why do we believe a new

construct is required?

If we look at the two existing nes, we find two radically different

structures. The data ne (in almost any notable data transport

architecture) uses some form of layering to hide complexity and to

enable extensibility, interoperability and scalability. ontrast the

control and management system is invariably designed to cut across

the layering, giving visibility and access to all the aspects of the

network, whi ust be monitored and managed. And, indeed,

because the management ne is all-seeing, it tends to scale poorly

and to be hard to change.

The knowledge ne clearly sits in a different ce. S e it

doesn’t move data directly, it is not the data ne. And unlike the

management ne it tends to break down boundaries to provide a

unified view, rather than partition the world into managed enclaves.

It is functionally unlike the management ne as well – it is hard to

envision the KP managing accounting records (reading them

occasionally, perhaps, but collecting, storing and processing them,

no).

2.2 Why a Unified Approach?
Consider the example of a user trying to install a new application

and discovering that it does not work. One reason might be that the

ISP of the user has blocked that class of traffic. For the KP to give

4

a distributed cognitive system that permeates th work, that we
call the knowledge ne.
The rest of this paper is organized as follows. Section 2 describes
the concept of the knowledge ne. It contrasts this concept with
alternatives, and argues for the cognitive approach. Section 3 is a
discussion of what this construct might do for u amples of how
it can mak working better. Section 4 discusses some important
design constraints and considerations for a knowledge ne
architecture. Section 5 outlines the key challenges in our path.

2. A Proposal: the Knowledge ne
The discussion above hints at a solution in which th work has a
high-level view of what its purpose is—the goals of its designers, of
the applications running on it, and of its users. In an application-
specifi work, one approa ight be to utilize and embed such

-specific knowledge in the core design of th work, as
was done in the ephon work. But this defeats a fundamental
objective of the Inte – its ability to host a nd changing
array of applications. Rather than pleasing no one by adding “just a
little” application knowledge to the Inte ’s simple and transparent
data transport ne, a bet lternative is to devise a separate
construct that creates, reconciles and maintains the many aspects of
a high-level view, and then provides services and advice as needed
to other elements of th work. This is the knowledge ne, or
KP.
Understanding the precise best path towards this goal is a matter of
significant research, and this paper neither can nor does propose a
complete technical description of the knowledge ne. As a start,
however, we sketch certain attributes potentially central to the
success of a knowledge ne, and consider how this
differs from today’s practice. These lude:
Edge involvement: -to-end pr iple suggests that much
valuable information abou work performance originates not in
th work, but in the devices and applications that use it. This is
an inevitable and desirable consequence of the Inte ’s general-
purpose data ne. It implies, however, that much of the
“knowledge” in the knowledge ne may be produced, managed,
and consumed at or beyond the “traditional” edge of th work.
The reach of the knowledge ne is broader than that of traditional
network management.
Global : Most management systems are regional — each
operator manages the part he owns. But truly useful problem
identification may depend on correlation of observations from
different parts of th work. Not only must data from the edges be
combined with data from “inside” th work, but data from
different parts of th work may be needed to fully comprehend a
sequence of events. The knowledge ne would, ideally, be able to
extend its to the entire globa work as required.
Compositional structure: If the reach of the KP is global, at the same
time it must be designed to take account of what we may loosely call
“compositional” considerations. A most basic example is that the
KPs of two unconnecte works should be capable of merging
their and activities if th works become connected.
A corollary of the composition problem is the need to operate in the
presence of imperfect and ing information: some regions will
desire to keep date private. Mutual distrust among som work
operators and service providers, and indeed, among any parties that
jockey for economic advantage, leads directly to today’s need for
highly skilled human reasoning to deduce and mode work

behavior. The KP faces a similar problem: it cannot assume a
homogeneou work of shared objectives and shared information.
Unified approach: One might speculate that the various problems we
aim to address could most easily be solved by dist t mechanisms,
working bottom up, perhaps loosely tied together at the top. In
contrast, the KP as we conceive it is a single, unified system, with
common standards and a common framework for “knowledge”. This
unified approach is needed because real world knowledge is not
strictly partitioned by task. We suggest that the knowledge ne
should be structured similarly, based on the knowledge, not the task.
We believe that while point solutions may be easier to develop, an
integrated approach will be substantially more effective in the long
run.
Cognitive framework: The knowledge ne needs to make
judgments in the presence of partial or ing information; to
recognize and mediate s in policies and goals; to respond to
problems and attacks in better-than-hum frames; to perform
optimizations in high-dimensional environments that are too
complicated to be addressed by humans or ytical solutions; and
to automate functions that today must be carried out by rare and
highly skille work technicians. We therefore expect cognitive
techniques to serve as the foundation of the knowledge ne:
representation, learning, and reasoning that allow the knowledge

ne to be “aware” of th work and its actions in th work.
We turn now to further discussion of three ideas key to our position:
the necessity of a new construct, the desirability of a unified
knowledge ne, and the value of cognitive tools.

2.1 Why a New Construct?
Most discussions o work architecture recognize two
architectural divisions, or nes: a data ne, over which content is
forwarded, and a control or management ne, which is used to
direct, measure, and repair the data ne. By talking of a
“knowledge ne” we are saying a fundamentally new construct is
required, rather than fitting knowledge into an existing ne
(presumably the management ne). Why do we believe a new
construct is required?
If we look at the two existing nes, we find two radically different
structures. The data ne (in almost any notable data transport
architecture) uses some form of layering to hide complexity and to
enable extensibility, interoperability and scalability. ontrast the
control and management system is invariably designed to cut across
the layering, giving visibility and access to all the aspects of the
network, whi ust be monitored and managed. And, indeed,
because the management ne is all-seeing, it tends to scale poorly
and to be hard to change.
The knowledge ne clearly sits in a different ce. S e it
doesn’t move data directly, it is not the data ne. And unlike the
management ne it tends to break down boundaries to provide a
unified view, rather than partition the world into managed enclaves.
It is functionally unlike the management ne as well – it is hard to
envision the KP managing accounting records (reading them
occasionally, perhaps, but collecting, storing and processing them,
no).

2.2 Why a Unified Approach?
Consider the example of a user trying to install a new application
and discovering that it does not work. One reason might be that the
ISP of the user has blocked that class of traffic. For the KP to give

4

the most effective feedback to each party, it needs access to the

configuration constraints set by the ISP, so it can determ he rules

behind the blocking and l the user what this implies. So it is

necessary that the information abou work configuration and

about user-observed problems be in the same framework.

A related example concerns overla work such as CDNs. It is

easy to imag hat one component of the KP is topology and

performance information th DN could use to position its

delivery nodes “close” to users. This information could come from a

diversity of sources such as work weather” services, user-

reported experience, and ISPs, and would lude not just traffic

measurements, but information about administrative traffic

restrictions and local firewall restrictions (perhaps the “users” can’t

receive certain types of content). The interested parties (users,

CDNs) benefit from having this information integrated and

presented in a consolidated form.

There are some cases where the KP may be able to resolve a

problem on its own. If it discovers that the reason for a problem is a

low-level decision that is not material to the high-level goals of the

operators, it might change the decision. But to determine if a change

is appropriate, KP needs access to the reasoning behind the setting.

So the knowledge about nning needs to be in the same context as

the repair problem.

When a component of th work makes a low-level observation

about a possible anomaly, it has no idea what the relevance actually

is. This observation might trigger a repair, a reconfiguration, a

notification to work operator in a distant part of th work, a

security alert, or something else quite different. So observations on

network conditions cannot be thought of as being a part of one

problem space, but instead as being a part of the KP.

We recognize that point solutions to specific problems may get part

of the way more rapidly that the general solution postulated here.

But the core of our hypothesis is that to get to the final goal: a

network that can configure itself, that can ex in itself, that can

repair itself, and does not confound the user with mysteries, the

approach based on the combination of point solutions will not

succeed.

2.3 Why a Cognitive System?
Our objectives for the Knowledge ne require it to meet a number

of significant challenges:

information, precise problem formulations, and a relatively static

operating environment. Instead, we suggest that “cognitive”

techniques will be needed. The key benefit of these techniques is

their potential to perform effectively, and to evaluate and improve

their own performance, in the presence of complex, onsistent,

dynamic, and evolving environments. We discuss two defining

characteristics of a cognitive knowledge ne.

First, the KP must eventually “close the loop” on th work as

does an ordinary control system. As we gain experience and trust,

the knowledge ne will first enable a recognize-ex ycle, then

a recognize-ex in-suggest cycle, and ultima y a recognize-act

cycle for many management tasks. Because the knowledge ne

must be more general and flexible than standard control systems, we

look elsewhere for additional inspiration. Architectures inspired by

theories of human cognition [18] have achieved some successes and

hint at one approach. In the knowledge ne context, a cognitive

architecture would of course be distributed and decentralized, and

the partitioning would be effected in part to support divergent

interests o work stakeholders.

Second, the KP must be able to learn and reason. Learning is the

pr ipled accumulation of knowledge, and can take ce through

many means: by trial and error, by instruction, by generalization, by

ogy, through problem solving and mental search, and more.

Some learning approaches require human involvement, and some do

not. In a static problem environment, one simple enough to admit of

ytic solution, learning is irrelevant. But I works, by design

and intent, are constantly evolving in many dimensions, and are

infinite in potential configurations. To the extent possible, when

new situations are recognized or new actions performed and

evaluated, the knowledge ne should improve: its knowledge base

should grow in useful ways. The first and most immediate challenge

of learning is to model the behavior, dependencies, and

requirements of applications through the obscuring veil of our

existing transparent data ne.

Reasoning involves the composition of existing knowledge to draw

new inferences and beliefs. Reasoning processes can translate

declarative knowledge (whether handcrafted or learned) into

interpretations of observations and decisions about actions. If we

wish th work of the future to support high-level goals and

constraints, we will need reasoning methods that can operate on

these ions.

In the long run, an interesting and important function of reasoning in

the knowledge ne will be to support mediation between users and

operators whose goals may with each other and/or with

fixed design constraints. The inevitability of such s suggests

that we must develop new techniques for representing and reasoning

about constraints and policies. Initially, these representations will

need to be inferred from low-level configurations and actions, but

the ultimate goal is to express goals and policies at a high level and

use those to genera ow-level configurations.

Even in the short run we can bring to bear a great deal of existing

research on the design and construction of a knowledge ne.

Experience with cognitive architectures [18], recent work in multi-

agent systems [22], and the emerging field of algorithmic game

theory may prove directly useful. However, th working context

also raises many challenges that will stretch the current state of

cognitive systems and redirect research in new and intriguing ways

[19,20].

• It must function usefully in the presence of omplete,

onsistent, and possibly misleading or malicious information.

System failures, information filtering for privacy or competitive

reasons, and finit work resources are just some of the

s conspiring to create this requirement.

It must perform appropria y in the presence of ing or

onsistent higher-level goals among the Inte ’s different

stakeholders. This is a manifestation of the tussle dilemma

discussed in [12].

It must operate effectively in the face of generality, luding

the introduction of new and applications not

conceived of at the time of its design, and in the face of a

highly dynamic environment, luding both short-term and

long-term changes in the structure and complexity of the

underlyin work.

•

•

We hypothesize that these challenges cannot be met by ytical

solutions, because ytical solutions generally require complete

5

the most effective feedback to each party, it needs access to the
configuration constraints set by the ISP, so it can determ he rules
behind the blocking and l the user what this implies. So it is
necessary that the information abou work configuration and
about user-observed problems be in the same framework.
A related example concerns overla work such as CDNs. It is
easy to imag hat one component of the KP is topology and
performance information th DN could use to position its
delivery nodes “close” to users. This information could come from a
diversity of sources such as work weather” services, user-
reported experience, and ISPs, and would lude not just traffic
measurements, but information about administrative traffic
restrictions and local firewall restrictions (perhaps the “users” can’t
receive certain types of content). The interested parties (users,
CDNs) benefit from having this information integrated and
presented in a consolidated form.
There are some cases where the KP may be able to resolve a
problem on its own. If it discovers that the reason for a problem is a
low-level decision that is not material to the high-level goals of the
operators, it might change the decision. But to determine if a change
is appropriate, KP needs access to the reasoning behind the setting.
So the knowledge about nning needs to be in the same context as
the repair problem.
When a component of th work makes a low-level observation
about a possible anomaly, it has no idea what the relevance actually
is. This observation might trigger a repair, a reconfiguration, a
notification to work operator in a distant part of th work, a
security alert, or something else quite different. So observations on
network conditions cannot be thought of as being a part of one
problem space, but instead as being a part of the KP.
We recognize that point solutions to specific problems may get part
of the way more rapidly that the general solution postulated here.
But the core of our hypothesis is that to get to the final goal: a
network that can configure itself, that can ex in itself, that can
repair itself, and does not confound the user with mysteries, the
approach based on the combination of point solutions will not
succeed.

2.3 Why a Cognitive System?
Our objectives for the Knowledge ne require it to meet a number
of significant challenges:

• It must function usefully in the presence of omplete,
onsistent, and possibly misleading or malicious information.

System failures, information filtering for privacy or competitive
reasons, and finit work resources are just some of the

s conspiring to create this requirement.

• It must perform appropria y in the presence of ing or
onsistent higher-level goals among the Inte ’s different

stakeholders. This is a manifestation of the tussle dilemma
discussed in [12].

• It must operate effectively in the face of generality, luding
the introduction of new and applications not
conceived of at the time of its design, and in the face of a
highly dynamic environment, luding both short-term and
long-term changes in the structure and complexity of the
underlyin work.

We hypothesize that these challenges cannot be met by ytical
solutions, because ytical solutions generally require complete

information, precise problem formulations, and a relatively static
operating environment. Instead, we suggest that “cognitive”
techniques will be needed. The key benefit of these techniques is
their potential to perform effectively, and to evaluate and improve
their own performance, in the presence of complex, onsistent,
dynamic, and evolving environments. We discuss two defining
characteristics of a cognitive knowledge ne.
First, the KP must eventually “close the loop” on th work as
does an ordinary control system. As we gain experience and trust,
the knowledge ne will first enable a recognize-ex ycle, then
a recognize-ex in-suggest cycle, and ultima y a recognize-act
cycle for many management tasks. Because the knowledge ne
must be more general and flexible than standard control systems, we
look elsewhere for additional inspiration. Architectures inspired by
theories of human cognition [18] have achieved some successes and
hint at one approach. In the knowledge ne context, a cognitive
architecture would of course be distributed and decentralized, and
the partitioning would be effected in part to support divergent
interests o work stakeholders.
Second, the KP must be able to learn and reason. Learning is the
pr ipled accumulation of knowledge, and can take ce through
many means: by trial and error, by instruction, by generalization, by

ogy, through problem solving and mental search, and more.
Some learning approaches require human involvement, and some do
not. In a static problem environment, one simple enough to admit of

ytic solution, learning is irrelevant. But I works, by design
and intent, are constantly evolving in many dimensions, and are
infinite in potential configurations. To the extent possible, when
new situations are recognized or new actions performed and
evaluated, the knowledge ne should improve: its knowledge base
should grow in useful ways. The first and most immediate challenge
of learning is to model the behavior, dependencies, and
requirements of applications through the obscuring veil of our
existing transparent data ne.
Reasoning involves the composition of existing knowledge to draw
new inferences and beliefs. Reasoning processes can translate
declarative knowledge (whether handcrafted or learned) into
interpretations of observations and decisions about actions. If we
wish th work of the future to support high-level goals and
constraints, we will need reasoning methods that can operate on
these ions.
In the long run, an interesting and important function of reasoning in
the knowledge ne will be to support mediation between users and
operators whose goals may with each other and/or with
fixed design constraints. The inevitability of such s suggests
that we must develop new techniques for representing and reasoning
about constraints and policies. Initially, these representations will
need to be inferred from low-level configurations and actions, but
the ultimate goal is to express goals and policies at a high level and
use those to genera ow-level configurations.
Even in the short run we can bring to bear a great deal of existing
research on the design and construction of a knowledge ne.
Experience with cognitive architectures [18], recent work in multi-
agent systems [22], and the emerging field of algorithmic game
theory may prove directly useful. However, th working context
also raises many challenges that will stretch the current state of
cognitive systems and redirect research in new and intriguing ways
[19,20].

5

something is wrong. The KP will have to decide how much

credence to give these signals, depending on where they come from.

Behind the scenes, the FIX command will trigger a range of

activities in the KP. The FIX command would start with a local

component that runs on the user’s machine, and then exchanges

information with the KP to figure out what is wrong. The

diagnostics can check out functions at all levels, from packet

forwarding to application function. There are several current

research projects that this application could build on [13,14].

Once node has performed what diagnosis it can, the next

stage is for the tool to add assertions to the shared knowledge ne

about what it has discovered, and ask the KP for relevant

information. This contribution to the knowledge ne allows all the

users on th work collectively to build a global view o work

and service status. This d an be combined with information

derived from measurement efforts now going on across the Inte

that attempt to build an overall model o work status [9,15]. Such

aggregation is important if the failure is hat affects lot of users.

Automatic (re)configuration: The dynamic routing of the original

Inte did not take into account administrative and

constraints, so routing today is more and more defined by static

 tables. This means that devices such as routers are

reasingly ly configured and managed. Static tables and

 configuration make th work brittle to failure, hard to

change, and even harder to reason about globally. Imagine, as part

of the KP, a configuration manager for a region of the Inte ,

which would accept high-level assertions about how the components

of work are supposed to arrange themselves, and guide the

actual detailed configuration accordingly. Examples lude

controlling the deployment of a consume work in the home, an

ad ho work in support of a rapid deployment , or work

for a small business. Successful accomplishment of this project

could lead to substantial reductions in manpower needed to

configure and operat works.

The KP configuration manager should have enough understanding

of low-level structure to detect if th work is properly configured

according to the high-level constraints, to detect if a better

configuration alternative is available, and to detect if the system

appears to be corrupted. The reasoning must go in both directions.

That is, the manager must be able to derive low-level settings given

high-level goals, priorities and constraints, and it must be able to

look at existing low-level settings and describe the resulting

behavior in the high-level terms.

Again, the interesting problem (once we get the basic idea to work)

is when the system encounters ing assertions made by

3. What is the Knowledge ne Good For?
At a high level, we proposed a unified goal for the KP: build a new

generation o work by allowing it to have a view of what it

supposed to be, and what it is supposed to be ng. To achieve this

goal, there are more specific problem s to be supported. Here

we discuss in more detail some of them.

Fau iagnosis and mitigation: Today, when some part of the

Inte fails, it is almost impossible for user to l what has

happened, to figure out who should be notified, or what to do to

correct the fault. If we take the Inte of today as the starting point,

it is appealing to imagine a command that a user can run to demand

an ex nation when something seems to be broken. This is the

WHY(problem-x) command: why is x broken? So, for instance, the

user might ask, “Why can’t I get to ?”

However, the WHY formulation is not bold enough. An over-bold

alternative would be that if the KP is smart enough, th work

should never fail. In this case, there is no need for WHY. But this

ambition is fundamentally flawed. In some cases, only a human

knows enough to determine if what is happening is actually a fault.

When Dave unplugs his laptop and puts it in his briefcase, there may

be some applications that suddenly stop working, but this is not a

fault. It is what Dave intended, and if some semi-smart KP wakes up

each time he disconnects his laptop and asks if he wants to

reconnect it, this is a nightmare, not a success. So there will be times

when only a can give the KP guidance. Instead of

WHY(problem-x), this is FIX(problem-x). The user is saying that

something is broken, and make it right.

Is this enough guidance that the KP can correct what is wrong? In

fact, the interesting examples are when the “problem” is caused by

ing specifications or constraints that come from different

people. One may say FIX(this game I just installed that does not

work), and the reason it is failing is that the ISP has blocked that

game. One may say FIX(lousy bandwidth) but the problem is that

one ha ceeded one’s usage quota and the ISP is ra imiting.

These are cases where the KP may not be able to resolve the matter.

What we might strive for, however, is a KP that can either resolve a

problem or say why not. So one answer to FIX(problem-x) may be

CANNOT(reason-y). And if the system does fix something, it may

want to l a that this happened, ase there is a further

action that only a can take.

Thi ample suggests that the in ction between the user and the

KP is bi-directional and expressive. And of course, the KP may

communicate with many entities about a problem. The demand from

a user FIX(broken-game) might trigger a message back to the user

that the game is blocked, but might also trigger a message to the ISP

that it has an unhappy user.

A further extension of this story is that the KP can provide an

assistant for user and managers, an agent that watches what the

people do, and learns over time what is normal and what is not. So a

KP agent on Dave’s laptop might learn that Dave unplugs it all the

time, while an agent on Dave’s desktop machine might realize that

he never disconnects it, and risk bothering Dave to ask if he meant

to do that. In this way, the problem of fau iagnosis and mitigation

has a learning component.

Once the FIX(problem-x) function has been implemented in the KP,

programs as well as people can use it. As the user’s agent learns, it

should more and more often give this signal on its own. And other

programs, such as application code, may detect and signal that

different parties. Th work manager might say

ROUTING_PREFERENCE(low-cost links), and an end-user’s

machine might say FIX(low bandwidth). Again, the KP may be able

to resolve some of these problems, and might learn over time when

it is safe for it to act on its own, and when it must kick the problem

back to the relevant humans in meaningful terms. (Thi ample, by

the way, illustrates why the KP must be seen as a unified system, not

as separate systems for fault management and for configuration.)

The configuration task is not something that happens once at the

turn-up of th work. It should be something that is happening

constantly, looking at changin work conditions, application

demands, and changing constraints. It is also a task that can run

“recursively”. A globa work is not built top down. It is built

bottom up, region by region. Each region will first configure itself

6

3. What is the Knowledge ne Good For?
At a high level, we proposed a unified goal for the KP: build a new
generation o work by allowing it to have a view of what it
supposed to be, and what it is supposed to be ng. To achieve this
goal, there are more specific problem s to be supported. Here
we discuss in more detail some of them.
Fau iagnosis and mitigation: Today, when some part of the
Inte fails, it is almost impossible for user to l what has
happened, to figure out who should be notified, or what to do to
correct the fault. If we take the Inte of today as the starting point,
it is appealing to imagine a command that a user can run to demand
an ex nation when something seems to be broken. This is the
WHY(problem-x) command: why is x broken? So, for instance, the
user might ask, “Why can’t I get to ?”
However, the WHY formulation is not bold enough. An over-bold
alternative would be that if the KP is smart enough, th work
should never fail. In this case, there is no need for WHY. But this
ambition is fundamentally flawed. In some cases, only a human
knows enough to determine if what is happening is actually a fault.
When Dave unplugs his laptop and puts it in his briefcase, there may
be some applications that suddenly stop working, but this is not a
fault. It is what Dave intended, and if some semi-smart KP wakes up
each time he disconnects his laptop and asks if he wants to
reconnect it, this is a nightmare, not a success. So there will be times
when only a can give the KP guidance. Instead of
WHY(problem-x), this is FIX(problem-x). The user is saying that
something is broken, and make it right.
Is this enough guidance that the KP can correct what is wrong? In
fact, the interesting examples are when the “problem” is caused by

ing specifications or constraints that come from different
people. One may say FIX(this game I just installed that does not
work), and the reason it is failing is that the ISP has blocked that
game. One may say FIX(lousy bandwidth) but the problem is that
one ha ceeded one’s usage quota and the ISP is ra imiting.
These are cases where the KP may not be able to resolve the matter.
What we might strive for, however, is a KP that can either resolve a
problem or say why not. So one answer to FIX(problem-x) may be
CANNOT(reason-y). And if the system does fix something, it may
want to l a that this happened, ase there is a further
action that only a can take.
Thi ample suggests that the in ction between the user and the
KP is bi-directional and expressive. And of course, the KP may
communicate with many entities about a problem. The demand from
a user FIX(broken-game) might trigger a message back to the user
that the game is blocked, but might also trigger a message to the ISP
that it has an unhappy user.
A further extension of this story is that the KP can provide an
assistant for user and managers, an agent that watches what the
people do, and learns over time what is normal and what is not. So a
KP agent on Dave’s laptop might learn that Dave unplugs it all the
time, while an agent on Dave’s desktop machine might realize that
he never disconnects it, and risk bothering Dave to ask if he meant
to do that. In this way, the problem of fau iagnosis and mitigation
has a learning component.
Once the FIX(problem-x) function has been implemented in the KP,
programs as well as people can use it. As the user’s agent learns, it
should more and more often give this signal on its own. And other
programs, such as application code, may detect and signal that

something is wrong. The KP will have to decide how much
credence to give these signals, depending on where they come from.
Behind the scenes, the FIX command will trigger a range of
activities in the KP. The FIX command would start with a local
component that runs on the user’s machine, and then exchanges
information with the KP to figure out what is wrong. The
diagnostics can check out functions at all levels, from packet
forwarding to application function. There are several current
research projects that this application could build on [13,14].
Once node has performed what diagnosis it can, the next
stage is for the tool to add assertions to the shared knowledge ne
about what it has discovered, and ask the KP for relevant
information. This contribution to the knowledge ne allows all the
users on th work collectively to build a global view o work
and service status. This d an be combined with information
derived from measurement efforts now going on across the Inte
that attempt to build an overall model o work status [9,15]. Such
aggregation is important if the failure is hat affects lot of users.
Automatic (re)configuration: The dynamic routing of the original
Inte did not take into account administrative and
constraints, so routing today is more and more defined by static

 tables. This means that devices such as routers are
reasingly ly configured and managed. Static tables and

 configuration make th work brittle to failure, hard to
change, and even harder to reason about globally. Imagine, as part
of the KP, a configuration manager for a region of the Inte ,
which would accept high-level assertions about how the components
of work are supposed to arrange themselves, and guide the
actual detailed configuration accordingly. Examples lude
controlling the deployment of a consume work in the home, an
ad ho work in support of a rapid deployment , or work
for a small business. Successful accomplishment of this project
could lead to substantial reductions in manpower needed to
configure and operat works.
 The KP configuration manager should have enough understanding
of low-level structure to detect if th work is properly configured
according to the high-level constraints, to detect if a better
configuration alternative is available, and to detect if the system
appears to be corrupted. The reasoning must go in both directions.
That is, the manager must be able to derive low-level settings given
high-level goals, priorities and constraints, and it must be able to
look at existing low-level settings and describe the resulting
behavior in the high-level terms.
Again, the interesting problem (once we get the basic idea to work)
is when the system encounters ing assertions made by
different parties. Th work manager might say
ROUTING_PREFERENCE(low-cost links), and an end-user’s
machine might say FIX(low bandwidth). Again, the KP may be able
to resolve some of these problems, and might learn over time when
it is safe for it to act on its own, and when it must kick the problem
back to the relevant humans in meaningful terms. (Thi ample, by
the way, illustrates why the KP must be seen as a unified system, not
as separate systems for fault management and for configuration.)
The configuration task is not something that happens once at the
turn-up of th work. It should be something that is happening
constantly, looking at changin work conditions, application
demands, and changing constraints. It is also a task that can run
“recursively”. A globa work is not built top down. It is built
bottom up, region by region. Each region will first configure itself

6

using its locally specified goals and constraints. But when two

regions then connect, there may be further constraints that one

imposes on the other. So a provide work might say to a

subscribe work: NO_MULTICAST. This might cause the

subscribe work to change some of its internal organization,

disable some end-user applications, and so on.

Support for overla works: If the KP has enough information to

configure th work itself, that information c so be useful to

applications that are configuring themselves. For example, we are

reasingly seeing the development of application-specific overlay

networks on the Inte . Each overla work uses edge-based

mechanisms to evaluate the performance of different possible paths

through the Inte , and seeks to build a set of transport paths that

effectively route application packets through what appears to be the

part of the Inte best suited to the application’s needs. Currently,

applicatio works must probe the Inte , because there is no

mechanism for them to learn about the capabilities of th work

core. The KP would be in a position to aggregate application- and

network-derived knowledge abou work performance, offer

applications better information about th work than they could

learn by probing, and access to control points whose behavior could

be modified to help better meet the applications’ needs. The KP

thus enables per-application control over traffic without the need to

build per-application infrastructure throughout th work.

 Knowledge-enhanced intrusion detection: There are a number of

projects (and a number of products) that perform some sort of

ysis to detec work intrusions. In general they look for

patterns in data observed somewhere in th work. The current

generation of these tools trigger both false positives and false

negatives. It has been hypothesized that a next generation of tools

for intrusion detection will require that observations from several

points in th work will have to be correlated, in order to get a

more robust and useful signal. The development of the knowledge

ne provides a basis to implement this data gathering and

correlation.

• Is distributed - KP functionality for different regions of the

network is physically and logically decentralized.

Is bottom up - simple entities (e.g. web servers) can compose

into larger, more complex entities (e.g. a web farm) as needed,

and decompose themselves from the system as appropriate.

This is a recursive process, that may proceed on many levels.

Is constraint driven - the basic pr iple is that the system can,

and may, adopt (or not) any behavior that is not specifically

constrained.

Moves from simple to complex. Speaking generally, the act of

composing a set o works to form a larger one ces more

requirements or constraints on the behavior of eac work. A

trivial example would be that a standalone I work can use

a wide range of addresses, but connecting it to a large work

constrains the range of options in this regard.

•

•

•

Our first objective for the KP system architecture is that it support

this distributed, compositional , providing the necessary

enabling ions and capabilities.

ontrast with the distributed organization of the KP, we have

argued in previous sections of this paper that KP may often benefit

from taking a global - integrating observations and

conclusions from many points in th work. Key implications of

this are that:

• Data and knowledge integration is a central function of the KP.

The KP must be able to collect, filter, reduce, and route

observations, assertions, and conclusions from different parts

of th work to points where they are useful.

The KP must operate successfully in the presence of imperfect

information. Because this global is both physically

large and spans multiple administrative entities, the cognitive

algorithms of the KP must be prepared to operate in the

presence of limited and uncertain inputs.

The KP must reason about information tradeoffs. Sometimes, a

global may be critical. Other times, it may be

unimportant, or merely somewhat useful. The KP must be

prepared to reason about the tradeoffs involved in using data of

differing scope. For instance, diagnosing a web server failure

may, or more likely, may not require polling for user

experience from locations far away. A KP may need to employ

introspective meta-reasoning to act most effectively in these

circumstances.

•

•

4. Knowledge ne Architecture
Previous sections of this paper have outlined the goals we set for a

knowledge ne. In this section, we consider aspects of its system

structure. Our discussion is speculative: any successful KP

architecture will be shaped by a number of requirements and

constraints, not all of which are apparent today. At its highest level

the architecture of the KP will be shaped heavily by two broad

s: its distributed, compositional structure, and its multi-scale,

potentially global knowledge .

Our ultimate objective is tha worked systems should organize

themselves, under the constraints and guidance of external inputs, to

meet the goals of their stakeholders. Even in the near term, the KP

must respect and build on the fact tha works have internal

structure and dynamics -- larg works are composed by

interconnectin aller ones, participants come and go, and

relationships between the owners, operators and users of different

networks may change even when the physical structure does not.

This implies that the knowledge ne serving work is not a

globally engineered entity, but is instead an autonomously created

structure that is recursively, dynamically, and continuously

composing and decomposing itself from smaller sub- nes. This

requirement argues that the KP:

Our second objective for the KP system architecture is that to the

extent possible it develop, utilize, and reason about information at

whatever scope is appropriate for the problem it is addressing.

4.1 Functional and Structural Requirements
The above objectives, together with the core goals of the knowledge

ne, lead us to several top-level functional and structural

architectural requirements. We discuss four of these below.

4.1.1 Core Foundation
The heart of the knowledge ne is its ability to integrate behavioral

models and reasoning processes into a distributed worked

environment. The first component of this ability is support for the

creation, storage, propagation and discovery of a variety of

information, likely luding observations, which describe current

conditions; assertions, which capture high-level goals, intentions

and constraints o work operations; and ex nations, which are

7

using its locally specified goals and constraints. But when two
regions then connect, there may be further constraints that one
imposes on the other. So a provide work might say to a
subscribe work: NO_MULTICAST. This might cause the
subscribe work to change some of its internal organization,
disable some end-user applications, and so on.
Support for overla works: If the KP has enough information to
configure th work itself, that information c so be useful to
applications that are configuring themselves. For example, we are

reasingly seeing the development of application-specific overlay
networks on the Inte . Each overla work uses edge-based
mechanisms to evaluate the performance of different possible paths
through the Inte , and seeks to build a set of transport paths that
effectively route application packets through what appears to be the
part of the Inte best suited to the application’s needs. Currently,
applicatio works must probe the Inte , because there is no
mechanism for them to learn about the capabilities of th work
core. The KP would be in a position to aggregate application- and
network-derived knowledge abou work performance, offer
applications better information about th work than they could
learn by probing, and access to control points whose behavior could
be modified to help better meet the applications’ needs. The KP
thus enables per-application control over traffic without the need to
build per-application infrastructure throughout th work.
 Knowledge-enhanced intrusion detection: There are a number of
projects (and a number of products) that perform some sort of

ysis to detec work intrusions. In general they look for
patterns in data observed somewhere in th work. The current
generation of these tools trigger both false positives and false
negatives. It has been hypothesized that a next generation of tools
for intrusion detection will require that observations from several
points in th work will have to be correlated, in order to get a
more robust and useful signal. The development of the knowledge

ne provides a basis to implement this data gathering and
correlation.

4. Knowledge ne Architecture
Previous sections of this paper have outlined the goals we set for a
knowledge ne. In this section, we consider aspects of its system
structure. Our discussion is speculative: any successful KP
architecture will be shaped by a number of requirements and
constraints, not all of which are apparent today. At its highest level
the architecture of the KP will be shaped heavily by two broad

s: its distributed, compositional structure, and its multi-scale,
potentially global knowledge .
Our ultimate objective is tha worked systems should organize
themselves, under the constraints and guidance of external inputs, to
meet the goals of their stakeholders. Even in the near term, the KP
must respect and build on the fact tha works have internal
structure and dynamics -- larg works are composed by
interconnectin aller ones, participants come and go, and
relationships between the owners, operators and users of different
networks may change even when the physical structure does not.
This implies that the knowledge ne serving work is not a
globally engineered entity, but is instead an autonomously created
structure that is recursively, dynamically, and continuously
composing and decomposing itself from smaller sub- nes. This
requirement argues that the KP:

• Is distributed - KP functionality for different regions of the
network is physically and logically decentralized.

• Is bottom up - simple entities (e.g. web servers) can compose
into larger, more complex entities (e.g. a web farm) as needed,
and decompose themselves from the system as appropriate.
This is a recursive process, that may proceed on many levels.

• Is constraint driven - the basic pr iple is that the system can,
and may, adopt (or not) any behavior that is not specifically
constrained.

• Moves from simple to complex. Speaking generally, the act of
composing a set o works to form a larger one ces more
requirements or constraints on the behavior of eac work. A
trivial example would be that a standalone I work can use
a wide range of addresses, but connecting it to a large work
constrains the range of options in this regard.

Our first objective for the KP system architecture is that it support
this distributed, compositional , providing the necessary
enabling ions and capabilities.

ontrast with the distributed organization of the KP, we have
argued in previous sections of this paper that KP may often benefit
from taking a global - integrating observations and
conclusions from many points in th work. Key implications of
this are that:

• Data and knowledge integration is a central function of the KP.
The KP must be able to collect, filter, reduce, and route
observations, assertions, and conclusions from different parts
of th work to points where they are useful.

• The KP must operate successfully in the presence of imperfect
information. Because this global is both physically
large and spans multiple administrative entities, the cognitive
algorithms of the KP must be prepared to operate in the
presence of limited and uncertain inputs.

• The KP must reason about information tradeoffs. Sometimes, a
global may be critical. Other times, it may be
unimportant, or merely somewhat useful. The KP must be
prepared to reason about the tradeoffs involved in using data of
differing scope. For instance, diagnosing a web server failure
may, or more likely, may not require polling for user
experience from locations far away. A KP may need to employ
introspective meta-reasoning to act most effectively in these
circumstances.

Our second objective for the KP system architecture is that to the
extent possible it develop, utilize, and reason about information at
whatever scope is appropriate for the problem it is addressing.

4.1 Functional and Structural Requirements
The above objectives, together with the core goals of the knowledge

ne, lead us to several top-level functional and structural
architectural requirements. We discuss four of these below.

4.1.1 Core Foundation
The heart of the knowledge ne is its ability to integrate behavioral
models and reasoning processes into a distributed worked
environment. The first component of this ability is support for the
creation, storage, propagation and discovery of a variety of
information, likely luding observations, which describe current
conditions; assertions, which capture high-level goals, intentions
and constraints o work operations; and ex nations, which are

7

an example of how knowledge itself is embodied—ex nations

take observations and assertions and map them to conclusions.

To learn about and alter i vironment, the knowledge ne must

access, and manage, what the cognitive community calls sensors and

actuators. Sensors are entities that produce observations. Actuators

are entities that change behavior (e.g., change routing tables or bring

links up or down). So, for instance, a knowledge application that

sought to operate work according to certain policies might use

sensors to collect observations on th work, use assertions to

determine if th work’s behavior complies with , and, if

necessary, use actuators to change th work’s behavior.

The most central aspect of the knowledge ne is its support for

cognitive computations. This is a challenging problem because the

dynamic and distributed KP environment is not well matched to the

classical knowledge level algorithms and agent architectures that

underpin much of current AI. Most AI algorithms are not designed

to work in a highly distributed context, and direct experience in

building a large distributed data management system with embedded

cognitive abilities is limited.1 What is needed are robust, tractable

and on-line algorithms for environments that are highly dynamic,

partially observable, stochastic and error prone. The field of Multi-

Agent Systems [22] has had some initial success in solving these

problems, although those addressed to date typically lack the

dynamicity required for the knowledge ne. Thus refinement of

this portion of the knowledge ne architecture, its infrastructure

support for a range of appropriate cognitive algorithms, is likely to

progress onjunction with further research ognitive systems

themselves.

4.1.2 Cross- and Multi- Reasoning
Where does the KP “run”? The composed, regional structure of the

KP might suggest that a specific server would support the part of the

KP that “reasons about” a region, for example an Inte AS. One

possibility is that the administrator of the AS would run the KP that

oversaw that AS. At a more level, one might state this

structuring strategy as “each region is responsible for reasoning

about itself.”

This is a bad idea, for several reasons. If the AS is down, this could

render the relevant KP information unreachable at exactly the wrong

time. The administrator of an AS might wish to limit the conclusions

that the KP reached about it, perhaps to remove knowledge that

seems unflattering, while others may choose to reach those

conclusions anyway. These examples show that reasoning about an

AS occurs tly of the AS; a fact that should be reflected in

the system structure. Different parts of the KP might tly

reason about an AS, and compare answers, to detect that part of the

KP is corrupted. This shows that there should be no specific

physical relationship between a region of th work and the KPs

reasoning engines related to that region.

A more radical possibility is that multiple entities compete to

provide information about a given AS. Each entity collects its own

data and sells its observations. The KP could seek information from

whichever entity or entities it believes provides the most accurate

and timely (or most cost effective) information. This ``knowledge

market ce'' creates a host of architectural challenges, ranging from

how to reason about information from multiple providers (even if

three different companies l you the same thing about an AS, it

may turn out that they're all reselling data from one Inte weather

service: if you really want a second opinion, how do you find the

second weather service?) to how to design KP protocols to

discourage different knowledge companies from subtly “enhancing”

the KP protocols or data in ways that make it harder for users to

concurrently use the servers of other knowledge providers?

This discussion demonstrates the potential richness of information

flow in the KP. Messages need to flow to more than one location so

that redundant reasoning can occur – and how a message flows may

depend on who asks it. Different parts of the KP may reach different

conclusions, and reconciling these is as important as is dealing with

omplete input data.

4.1.3 Data and Knowledge Routing
We have argued that the KP will benefit from gaining a global

 on th work it serves. It is useful to consider how this

 might come about. I y smal work, it might

theoretically be possible to collect all relev formation, and

flood that information to each node in th work (more precisely,

in the distributed KP).

This idea is clearly impractical in large works. First, the sheer

volume of information is technically daunting, requiring a highly

scalable solution. Beyond this, s such as competition and

privacy come into y. In work of any size, it is necessary to

limit and optimize the collection and routing of information. More

sophistication is needed.

We suggest that the KP architecture should implement a framework

for knowledge management and routing characterized by two

attributes. It is knowledge-driven - the routing system itself

orporates information about what knowledge is most useful in

different circumstances, and uses scalable distributed techniques to

filter observations and “attract'' the most relevant observations

towards potential customers. It understands tradeoffs - it may

orporate the concept of quality - reasoning about producing

better or less good answers with correspondingly more or less effort,

time, bandwidth, etc., rather than just producing “an” answer.

4.1.4 Reasoning about Trust and Robustness
The KP's combination of compositional structure and global

 creates challenges to achieving a robust and trustworthy

design. Because a functioning KP is formed at any time from the

composition of the participatin works, the architecture must

reflect the fact that parts of the KP may be corrupted or broken, that

some participants may lie or export delibera y flawed reasoning,

and that system actions must be based on inputs that may be partial,

outdated or wrong.

This suggests that the KP may need to build, maintain, and reason

about trust relationships among its components and participants.

Portions of the KP that misbehave may be deemed untrustworthy by

other portions, and this information may be propagated among

portions that have decided to trust each other. In this way, a web of

trust can grow that identifies KP elements that seem to be

trustworthy and shuns elements that are not. This introspection

would likely require the development of trust models, and the use of

1One early and related attempt, the DARPA-sponsored Automate work

Management (ANM) project, sought to build work-wide MIB collector

combined with AI tools [7]. The ANM experience was that collecting data

was relatively easy, but getting the data to the right ce was hard – it was

easy to overwhelm links with management traffic if information was

circulated too aggressively.

8

an example of how knowledge itself is embodied—ex nations
take observations and assertions and map them to conclusions.
To learn about and alter i vironment, the knowledge ne must
access, and manage, what the cognitive community calls sensors and
actuators. Sensors are entities that produce observations. Actuators
are entities that change behavior (e.g., change routing tables or bring
links up or down). So, for instance, a knowledge application that
sought to operate work according to certain policies might use
sensors to collect observations on th work, use assertions to
determine if th work’s behavior complies with , and, if
necessary, use actuators to change th work’s behavior.
The most central aspect of the knowledge ne is its support for
cognitive computations. This is a challenging problem because the
dynamic and distributed KP environment is not well matched to the
classical knowledge level algorithms and agent architectures that
underpin much of current AI. Most AI algorithms are not designed
to work in a highly distributed context, and direct experience in
building a large distributed data management system with embedded
cognitive abilities is limited.1 What is needed are robust, tractable
and on-line algorithms for environments that are highly dynamic,
partially observable, stochastic and error prone. The field of Multi-
Agent Systems [22] has had some initial success in solving these
problems, although those addressed to date typically lack the
dynamicity required for the knowledge ne. Thus refinement of
this portion of the knowledge ne architecture, its infrastructure
support for a range of appropriate cognitive algorithms, is likely to
progress onjunction with further research ognitive systems
themselves.

4.1.2 Cross- and Multi- Reasoning
Where does the KP “run”? The composed, regional structure of the
KP might suggest that a specific server would support the part of the
KP that “reasons about” a region, for example an Inte AS. One
possibility is that the administrator of the AS would run the KP that
oversaw that AS. At a more level, one might state this
structuring strategy as “each region is responsible for reasoning
about itself.”
This is a bad idea, for several reasons. If the AS is down, this could
render the relevant KP information unreachable at exactly the wrong
time. The administrator of an AS might wish to limit the conclusions
that the KP reached about it, perhaps to remove knowledge that
seems unflattering, while others may choose to reach those
conclusions anyway. These examples show that reasoning about an
AS occurs tly of the AS; a fact that should be reflected in
the system structure. Different parts of the KP might tly
reason about an AS, and compare answers, to detect that part of the
KP is corrupted. This shows that there should be no specific
physical relationship between a region of th work and the KPs
reasoning engines related to that region.
A more radical possibility is that multiple entities compete to
provide information about a given AS. Each entity collects its own
data and sells its observations. The KP could seek information from

1One early and related attempt, the DARPA-sponsored Automated
Network Management (ANM) project, sought to build work-wide
MIB collector combined with AI tools [7]. The ANM experience was that
collecting data was relatively easy, but getting the data to the right ce
was hard – it was easy to overwhelm links with management traffic if
information was circulated too aggressively.

whichever entity or entities it believes provides the most accurate
and timely (or most cost effective) information. This ``knowledge
market ce'' creates a host of architectural challenges, ranging from
how to reason about information from multiple providers (even if
three different companies l you the same thing about an AS, it
may turn out that they're all reselling data from one Inte weather
service: if you really want a second opinion, how do you find the
second weather service?) to how to design KP protocols to
discourage different knowledge companies from subtly “enhancing”
the KP protocols or data in ways that make it harder for users to
concurrently use the servers of other knowledge providers?
This discussion demonstrates the potential richness of information
flow in the KP. Messages need to flow to more than one location so
that redundant reasoning can occur – and how a message flows may
depend on who asks it. Different parts of the KP may reach different
conclusions, and reconciling these is as important as is dealing with

omplete input data.

4.1.3 Data and Knowledge Routing
We have argued that the KP will benefit from gaining a global

 on th work it serves. It is useful to consider how this
 might come about. I y smal work, it might

theoretically be possible to collect all relev formation, and
flood that information to each node in th work (more precisely,
in the distributed KP).
This idea is clearly impractical in large works. First, the sheer
volume of information is technically daunting, requiring a highly
scalable solution. Beyond this, s such as competition and
privacy come into y. In work of any size, it is necessary to
limit and optimize the collection and routing of information. More
sophistication is needed.
We suggest that the KP architecture should implement a framework
for knowledge management and routing characterized by two
attributes. It is knowledge-driven - the routing system itself

orporates information about what knowledge is most useful in
different circumstances, and uses scalable distributed techniques to
filter observations and “attract'' the most relevant observations
towards potential customers. It understands tradeoffs - it may

orporate the concept of quality - reasoning about producing
better or less good answers with correspondingly more or less effort,
time, bandwidth, etc., rather than just producing “an” answer.

4.1.4 Reasoning about Trust and Robustness
The KP's combination of compositional structure and global

 creates challenges to achieving a robust and trustworthy
design. Because a functioning KP is formed at any time from the
composition of the participatin works, the architecture must
reflect the fact that parts of the KP may be corrupted or broken, that
some participants may lie or export delibera y flawed reasoning,
and that system actions must be based on inputs that may be partial,
outdated or wrong.
This suggests that the KP may need to build, maintain, and reason
about trust relationships among its components and participants.
Portions of the KP that misbehave may be deemed untrustworthy by
other portions, and this information may be propagated among
portions that have decided to trust each other. In this way, a web of
trust can grow that identifies KP elements that seem to be
trustworthy and shuns elements that are not. This introspection
would likely require the development of trust models, and the use of

8

以上内容仅为本文档的试下载部分，为可阅读页数的一半内容。如

要下载或阅读全文，请访问：https://d.book118.com/50800711702

3006036

https://d.book118.com/508007117023006036
https://d.book118.com/508007117023006036

