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transparen work with rich end-system functionality, and the 

deeply embedded assumption of a decentralized, multi- 

administrative structure are critical strengths, but lead to frustrated 

users when something fails, and high management overhead with 

mu anual configuration, diagnosis and design. 

Both user and operator frustrations arise from the same fundamental 

design pr iple of the Inte —the simple and transparent core 

with in ligence at the edges [1,2]. Th work carries data 

without knowing what that data is, or what its purpose is. If some 

combination of events is kee  data from getting through, the 

edge may recognize that there is a problem, but the core cannot l 

that something is wrong, because the core has no idea what should 

be happening. The edge understands applications, and what their 

expected behavior is; the core only deals with packets. Similarly, a 

network operator in cts with the core in very low-level terms such 

as per-router configuration of routes and policies. There is no way 

for the operator to express, or th work to model, what the high 

level goal of the operator is, and how the low-level decisions relate 

to that high level goal. 

As we design a new sort o work, we must not lose the features of 

the Inte  that have made it a success—its openness to new 

applications, the adaptability of its protocols, and the essential 

sticity basic to its nature. Yet we must devise a technique that 

marries these virtues to a new goal: the ability of th work to 

know what it is being asked to do, so that it can more and more take 

care of itself, rather than depending on people to attend to it. If the 

network had a high-level view of its design goals and the constraints 

on acceptable configurations, then it could make many low-level 

decisions on its own. It could communicate with th work 

designer in terms of how well it met the goals, rather than by 

dis ying a mass of router configuration tables. And it could deal 

with changes in the high level requirements by reconfiguring itself. 

We argue that traditional, algorithmic approaches to adaptivity are 

unlikely to provide the required sophistication of behavior. The 

approach we take must offer the ability to  and isolate high 

level goals from low level actions, to integrate and act on imperfect 

and ing information, and to learn from past actions to 

improve future performance. These properties are precisely those 

required to function effectively in the Inte 's environment of 

diverse and competing objectives, decentralized control, complexity, 

and dynamic change. 

This paper proposes an approach t work design based on tools 

from AI and cognitive systems. Specifically, we propose a construct, 

 
We propose a new objective fo work research: to build a 

fundamentally different sort o work that can assemble itself 

given high level instructions, reassemble itself as requirements 

change, automatically discover when something goes wrong, and 

automatically fix a detected problem or ex in why it cannot do so. 

We further argue that to achieve this goal, it is not sufficient to 

improve rementally on the techniques and algorithms we know 

today. Instead, we propose a new construct, the Knowledge ne, a 

pervasive system within th work that builds and maintains high- 

level models of what th work is supposed to do, in order to 

provide services and advice to other elements of th work. The 

knowledge ne is novel in its reliance on the tools of AI and 

cognitive systems. We argue that cognitive techniques, rather than 

traditional algorithmic approaches, are best suited to meeting the 

uncertainties and complexity of our objective. 

Categories and Subject Descriptors 
C.2.1 [Computer-Communicatio works] work 
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[Computer-Communicatio works] work Operations – 
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blind us to the Inte ’s limitations. Its emphasis on generality and 
heterogeneity, the 'narrow-hourglass' combination of a simple, 

transparen work with rich end-system functionality, and the 
deeply embedded assumption of a decentralized, multi-
administrative structure are critical strengths, but lead to frustrated 
users when something fails, and high management overhead with 
mu anual configuration, diagnosis and design.  
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design pr iple of the Inte —the simple and transparent core 
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combination of events is kee  data from getting through, the 
edge may recognize that there is a problem, but the core cannot l 
that something is wrong, because the core has no idea what should 
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expected behavior is; the core only deals with packets. Similarly, a 
network operator in cts with the core in very low-level terms such 
as per-router configuration of routes and policies. There is no way 
for the operator to express, or th work to model, what the high 
level goal of the operator is, and how the low-level decisions relate 
to that high level goal.  
As we design a new sort o work, we must not lose the features of 
the Inte  that have made it a success—its openness to new 
applications, the adaptability of its protocols, and the essential 

sticity basic to its nature.  Yet we must devise a technique that 
marries these virtues to a new goal: the ability of th work to 
know what it is being asked to do, so that it can more and more take 
care of itself, rather than depending on people to attend to it. If the 
network had a high-level view of its design goals and the constraints 
on acceptable configurations, then it could make many low-level 
decisions on its own. It could communicate with th work 
designer in terms of how well it met the goals, rather than by 
dis ying a mass of router configuration tables. And it could deal 
with changes in the high level requirements by reconfiguring itself.  
We argue that traditional, algorithmic approaches to adaptivity are 
unlikely to provide the required sophistication of behavior. The 
approach we take must offer the ability to  and isolate high 
level goals from low level actions, to integrate and act on imperfect 
and ing information, and to learn from past actions to 
improve future performance. These properties are precisely those 
required to function effectively in the Inte 's environment of 
diverse and competing objectives, decentralized control, complexity, 
and dynamic change.  
This paper proposes an approach t work design based on tools 
from AI and cognitive systems. Specifically, we propose a construct, 
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a distributed cognitive system that permeates th work, that we 

call the knowledge ne. 

The rest of this paper is organized as follows. Section 2 describes 

the concept of the knowledge ne. It contrasts this concept with 

alternatives, and argues for the cognitive approach. Section 3 is a 

discussion of what this construct might do for u amples of how 

it can mak working better. Section 4 discusses some important 

design constraints and considerations for a knowledge ne 

architecture. Section 5 outlines the key challenges in our path. 

2. A Proposal: the Knowledge ne 
The discussion above hints at a solution in which th work has a 

high-level view of what its purpose is—the goals of its designers, of 

the applications running on it, and of its users. In an application- 

specifi work, one approa ight be to utilize and embed such 

-specific knowledge in the core design of th work, as 

was done in the ephon work. But this defeats a fundamental 

objective of the Inte  – its ability to host a nd changing 

array of applications. Rather than pleasing no one by adding “just a 

little” application knowledge to the Inte ’s simple and transparent 

data transport ne, a bet lternative is to devise a separate 

construct that creates, reconciles and maintains the many aspects of 

a high-level view, and then provides services and advice as needed 

to other elements of th work. This is the knowledge ne, or 

KP. 

Understanding the precise best path towards this goal is a matter of 

significant research, and this paper neither can nor does propose a 

complete technical description of the knowledge ne. As a start, 

however, we sketch certain attributes potentially central to the 

success of a knowledge ne, and consider how this  

differs from today’s practice. These lude: 

Edge involvement: -to-end pr iple suggests that much 

valuable information abou work performance originates not in 

th work, but in the devices and applications that use it. This is 

an inevitable and desirable consequence of the Inte ’s general- 

purpose data ne. It implies, however, that much of the 

“knowledge” in the knowledge ne may be produced, managed, 

and consumed at or beyond the “traditional” edge of th work. 

The reach of the knowledge ne is broader than that of traditional 

network management. 

Global : Most management systems are regional — each 

operator manages the part he owns. But truly useful problem 

identification may depend on correlation of observations from 

different parts of th work. Not only must data from the edges be 

combined with data from “inside” th work, but data from 

different parts of th work may be needed to fully comprehend a 

sequence of events. The knowledge ne would, ideally, be able to 

extend its  to the entire globa work as required. 

Compositional structure: If the reach of the KP is global, at the same 

time it must be designed to take account of what we may loosely call 

“compositional” considerations. A most basic example is that the 

KPs of two unconnecte works should be capable of merging 

their  and activities if th works become connected. 

A corollary of the composition problem is the need to operate in the 

presence of imperfect and ing information: some regions will 

desire to keep date private. Mutual distrust among som work 

operators and service providers, and indeed, among any parties that 

jockey for economic advantage, leads directly to today’s need for 

highly skilled human reasoning to deduce and mode work 

behavior. The KP faces a similar problem: it cannot assume a 

homogeneou work of shared objectives and shared information. 

Unified approach: One might speculate that the various problems we 

aim to address could most easily be solved by dist t mechanisms, 

working bottom up, perhaps loosely tied together at the top. In 

contrast, the KP as we conceive it is a single, unified system, with 

common standards and a common framework for “knowledge”. This 

unified approach is needed because real world knowledge is not 

strictly partitioned by task. We suggest that the knowledge ne 

should be structured similarly, based on the knowledge, not the task. 

We believe that while point solutions may be easier to develop, an 

integrated approach will be substantially more effective in the long 

run. 

Cognitive framework: The knowledge ne needs to make 

judgments in the presence of partial or ing information; to 

recognize and mediate s in policies and goals; to respond to 

problems and attacks in better-than-hum  frames; to perform 

optimizations in high-dimensional environments that are too 

complicated to be addressed by humans or ytical solutions; and 

to automate functions that today must be carried out by rare and 

highly skille work technicians. We therefore expect cognitive 

techniques to serve as the foundation of the knowledge ne: 

representation, learning, and reasoning that allow the knowledge 

ne to be “aware” of th work and its actions in th work. 

We turn now to further discussion of three ideas key to our position: 

the necessity of a new construct, the desirability of a unified 

knowledge ne, and the value of cognitive tools. 

2.1 Why a New Construct? 
Most discussions o work architecture recognize two 

architectural divisions, or nes: a data ne, over which content is 

forwarded, and a control or management ne, which is used to 

direct, measure, and repair the data ne. By talking of a 

“knowledge ne” we are saying a fundamentally new construct is 

required, rather than fitting knowledge into an existing ne 

(presumably the management ne). Why do we believe a new 

construct is required? 

If we look at the two existing nes, we find two radically different 

structures. The data ne (in almost any notable data transport 

architecture) uses some form of layering to hide complexity and to 

enable extensibility, interoperability and scalability. ontrast the 

control and management system is invariably designed to cut across 

the layering, giving visibility and access to all the aspects of the 

network, whi ust be monitored and managed. And, indeed, 

because the management ne is all-seeing, it tends to scale poorly 

and to be hard to change. 

The knowledge ne clearly sits in a different ce. S e it 

doesn’t move data directly, it is not the data ne. And unlike the 

management ne it tends to break down boundaries to provide a 

unified view, rather than partition the world into managed enclaves. 

It is functionally unlike the management ne as well – it is hard to 

envision the KP managing accounting records (reading them 

occasionally, perhaps, but collecting, storing and processing them, 

no). 

2.2 Why a Unified Approach? 
Consider the example of a user trying to install a new application 

and discovering that it does not work. One reason might be that the 

ISP of the user has blocked that class of traffic. For the KP to give 
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the most effective feedback to each party, it needs access to the 

configuration constraints set by the ISP, so it can determ he rules 

behind the blocking and l the user what this implies. So it is 

necessary that the information abou work configuration and 

about user-observed problems be in the same framework. 

A related example concerns overla work such as CDNs. It is 

easy to imag hat one component of the KP is topology and 

performance information th DN could use to position its 

delivery nodes “close” to users. This information could come from a 

diversity of sources such as work weather” services, user- 

reported experience, and ISPs, and would lude not just traffic 

measurements, but information about administrative traffic 

restrictions and local firewall restrictions (perhaps the “users” can’t 

receive certain types of content). The interested parties (users, 

CDNs) benefit from having this information integrated and 

presented in a consolidated form. 

There are some cases where the KP may be able to resolve a 

problem on its own. If it discovers that the reason for a problem is a 

low-level decision that is not material to the high-level goals of the 

operators, it might change the decision. But to determine if a change 

is appropriate, KP needs access to the reasoning behind the setting. 

So the knowledge about nning needs to be in the same context as 

the repair problem. 

When a component of th work makes a low-level observation 

about a possible anomaly, it has no idea what the relevance actually 

is. This observation might trigger a repair, a reconfiguration, a 

notification to work operator in a distant part of th work, a 

security alert, or something else quite different. So observations on 

network conditions cannot be thought of as being a part of one 

problem space, but instead as being a part of the KP. 

We recognize that point solutions to specific problems may get part 

of the way more rapidly that the general solution postulated here. 

But the core of our hypothesis is that to get to the final goal: a 

network that can configure itself, that can ex in itself, that can 

repair itself, and does not confound the user with mysteries, the 

approach based on the combination of point solutions will not 

succeed. 

2.3 Why a Cognitive System? 
Our objectives for the Knowledge ne require it to meet a number 

of significant challenges: 

information, precise problem formulations, and a relatively static 

operating environment. Instead, we suggest that “cognitive” 

techniques will be needed. The key benefit of these techniques is 

their potential to perform effectively, and to evaluate and improve 

their own performance, in the presence of complex, onsistent, 

dynamic, and evolving environments. We discuss two defining 

characteristics of a cognitive knowledge ne. 

First, the KP must eventually “close the loop” on th work as 

does an ordinary control system. As we gain experience and trust, 

the knowledge ne will first enable a recognize-ex ycle, then 

a recognize-ex in-suggest cycle, and ultima y a recognize-act 

cycle for many management tasks. Because the knowledge ne 

must be more general and flexible than standard control systems, we 

look elsewhere for additional inspiration. Architectures inspired by 

theories of human cognition [18] have achieved some successes and 

hint at one approach. In the knowledge ne context, a cognitive 

architecture would of course be distributed and decentralized, and 

the partitioning would be effected in part to support divergent 

interests o work stakeholders. 

Second, the KP must be able to learn and reason. Learning is the 

pr ipled accumulation of knowledge, and can take ce through 

many means: by trial and error, by instruction, by generalization, by 

ogy, through problem solving and mental search, and more. 

Some learning approaches require human involvement, and some do 

not. In a static problem environment, one simple enough to admit of 

ytic solution, learning is irrelevant. But I works, by design 

and intent, are constantly evolving in many dimensions, and are 

infinite in potential configurations. To the extent possible, when 

new situations are recognized or new actions performed and 

evaluated, the knowledge ne should improve: its knowledge base 

should grow in useful ways. The first and most immediate challenge 

of learning is to model the behavior, dependencies, and 

requirements of applications through the obscuring veil of our 

existing transparent data ne. 

Reasoning involves the composition of existing knowledge to draw 

new inferences and beliefs. Reasoning processes can translate 

declarative knowledge (whether handcrafted or learned) into 

interpretations of observations and decisions about actions. If we 

wish th work of the future to support high-level goals and 

constraints, we will need reasoning methods that can operate on 

these ions. 

In the long run, an interesting and important function of reasoning in 

the knowledge ne will be to support mediation between users and 

operators whose goals may  with each other and/or with 

fixed design constraints. The inevitability of such s suggests 

that we must develop new techniques for representing and reasoning 

about constraints and policies. Initially, these representations will 

need to be inferred from low-level configurations and actions, but 

the ultimate goal is to express goals and policies at a high level and 

use those to genera ow-level configurations. 

Even in the short run we can bring to bear a great deal of existing 

research on the design and construction of a knowledge ne. 

Experience with cognitive architectures [18], recent work in multi- 

agent systems [22], and the emerging field of algorithmic game 

theory may prove directly useful. However, th working context 

also raises many challenges that will stretch the current state of 

cognitive systems and redirect research in new and intriguing ways 

[19,20]. 

• It must function usefully in the presence of omplete, 

onsistent, and possibly misleading or malicious information. 

System failures, information filtering for privacy or competitive 

reasons, and finit work resources are just some of the 

s conspiring to create this requirement. 

It must perform appropria y in the presence of ing or 

onsistent higher-level goals among the Inte ’s different 

stakeholders. This is a manifestation of the tussle dilemma 

discussed in [12]. 

It must operate effectively in the face of generality, luding 

the introduction of new  and applications not 

conceived of at the time of its design, and in the face of a 

highly dynamic environment, luding both short-term and 

long-term changes in the structure and complexity of the 

underlyin work. 

• 

• 

We hypothesize that these challenges cannot be met by ytical 

solutions, because ytical solutions generally require complete 
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stakeholders. This is a manifestation of the tussle dilemma 
discussed in [12]. 

• It must operate effectively in the face of generality, luding 
the introduction of new  and applications not 
conceived of at the time of its design, and in the face of a 
highly dynamic environment, luding both short-term and 
long-term changes in the structure and complexity of the 
underlyin work.  

We hypothesize that these challenges cannot be met by ytical 
solutions, because ytical solutions generally require complete 

information, precise problem formulations, and a relatively static 
operating environment. Instead, we suggest that “cognitive” 
techniques will be needed. The key benefit of these techniques is 
their potential to perform effectively, and to evaluate and improve 
their own performance, in the presence of complex, onsistent, 
dynamic, and evolving environments. We discuss two defining 
characteristics of a cognitive knowledge ne. 
First, the KP must eventually “close the loop” on th work as 
does an ordinary control system.  As we gain experience and trust, 
the knowledge ne will first enable a recognize-ex ycle, then 
a recognize-ex in-suggest cycle, and ultima y a recognize-act 
cycle for many management tasks. Because the knowledge ne 
must be more general and flexible than standard control systems, we 
look elsewhere for additional inspiration. Architectures inspired by 
theories of human cognition [18] have achieved some successes and 
hint at one approach. In the knowledge ne context, a cognitive 
architecture would of course be distributed and decentralized, and 
the partitioning would be effected in part to support divergent 
interests o work stakeholders. 
Second, the KP must be able to learn and reason. Learning is the 
pr ipled accumulation of knowledge, and can take ce through 
many means:  by trial and error, by instruction, by generalization, by 

ogy, through problem solving and mental search, and more.  
Some learning approaches require human involvement, and some do 
not. In a static problem environment, one simple enough to admit of 

ytic solution, learning is irrelevant. But I works, by design 
and intent, are constantly evolving in many dimensions, and are 
infinite in potential configurations. To the extent possible, when 
new situations are recognized or new actions performed and 
evaluated, the knowledge ne should improve:  its knowledge base 
should grow in useful ways. The first and most immediate challenge 
of learning is to model the behavior, dependencies, and 
requirements of applications through the obscuring veil of our 
existing transparent data ne. 
Reasoning involves the composition of existing knowledge to draw 
new inferences and beliefs. Reasoning processes can translate 
declarative knowledge (whether handcrafted or learned) into 
interpretations of observations and decisions about actions. If we 
wish th work of the future to support high-level goals and 
constraints, we will need reasoning methods that can operate on 
these ions. 
In the long run, an interesting and important function of reasoning in 
the knowledge ne will be to support mediation between users and 
operators whose goals may  with each other and/or with 
fixed design constraints. The inevitability of such s suggests 
that we must develop new techniques for representing and reasoning 
about constraints and policies. Initially, these representations will 
need to be inferred from low-level configurations and actions, but 
the ultimate goal is to express goals and policies at a high level and 
use those to genera ow-level configurations.  
Even in the short run we can bring to bear a great deal of existing 
research on the design and construction of a knowledge ne.  
Experience with cognitive architectures [18], recent work in multi-
agent systems [22], and the emerging field of algorithmic game 
theory may prove directly useful.  However, th working context 
also raises many challenges that will stretch the current state of 
cognitive systems and redirect research in new and intriguing ways 
[19,20]. 
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something is wrong. The KP will have to decide how much 

credence to give these signals, depending on where they come from. 

Behind the scenes, the FIX command will trigger a range of 

activities in the KP. The FIX command would start with a local 

component that runs on the user’s machine, and then exchanges 

information with the KP to figure out what is wrong. The 

diagnostics can check out functions at all levels, from packet 

forwarding to application function. There are several current 

research projects that this application could build on [13,14]. 

Once  node has performed what diagnosis it can, the next 

stage is for the tool to add assertions to the shared knowledge ne 

about what it has discovered, and ask the KP for relevant 

information. This contribution to the knowledge ne allows all the 

users on th work collectively to build a global view o work 

and service status. This d an be combined with information 

derived from measurement efforts now going on across the Inte  

that attempt to build an overall model o work status [9,15]. Such 

aggregation is important if the failure is hat affects lot of users. 

Automatic (re)configuration: The dynamic routing of the original 

Inte  did not take into account administrative and  

constraints, so routing today is more and more defined by static 

 tables. This means that devices such as routers are 

reasingly ly configured and managed. Static tables and 

 configuration make th work brittle to failure, hard to 

change, and even harder to reason about globally. Imagine, as part 

of the KP, a configuration manager for a region of the Inte , 

which would accept high-level assertions about how the components 

of work are supposed to arrange themselves, and guide the 

actual detailed configuration accordingly. Examples lude 

controlling the deployment of a consume work in the home, an 

ad ho work in support of a rapid deployment , or work 

for a small business. Successful accomplishment of this project 

could lead to substantial reductions in manpower needed to 

configure and operat works. 

The KP configuration manager should have enough understanding 

of low-level structure to detect if th work is properly configured 

according to the high-level constraints, to detect if a better 

configuration alternative is available, and to detect if the system 

appears to be corrupted. The reasoning must go in both directions. 

That is, the manager must be able to derive low-level settings given 

high-level goals, priorities and constraints, and it must be able to 

look at existing low-level settings and describe the resulting 

behavior in the high-level terms. 

Again, the interesting problem (once we get the basic idea to work) 

is when the system encounters ing assertions made by 

3. What is the Knowledge ne Good For? 
At a high level, we proposed a unified goal for the KP: build a new 

generation o work by allowing it to have a view of what it 

supposed to be, and what it is supposed to be ng. To achieve this 

goal, there are more specific problem s to be supported. Here 

we discuss in more detail some of them. 

Fau iagnosis and mitigation: Today, when some part of the 

Inte  fails, it is almost impossible for  user to l what has 

happened, to figure out who should be notified, or what to do to 

correct the fault. If we take the Inte  of today as the starting point, 

it is appealing to imagine a command that a user can run to demand 

an ex nation when something seems to be broken. This is the 

WHY(problem-x) command: why is x broken? So, for instance, the 

user might ask, “Why can’t I get to ?” 

However, the WHY formulation is not bold enough. An over-bold 

alternative would be that if the KP is smart enough, th work 

should never fail. In this case, there is no need for WHY. But this 

ambition is fundamentally flawed. In some cases, only a human 

knows enough to determine if what is happening is actually a fault. 

When Dave unplugs his laptop and puts it in his briefcase, there may 

be some applications that suddenly stop working, but this is not a 

fault. It is what Dave intended, and if some semi-smart KP wakes up 

each time he disconnects his laptop and asks if he wants to 

reconnect it, this is a nightmare, not a success. So there will be times 

when only a  can give the KP guidance. Instead of 

WHY(problem-x), this is FIX(problem-x). The user is saying that 

something is broken, and make it right. 

Is this enough guidance that the KP can correct what is wrong? In 

fact, the interesting examples are when the “problem” is caused by 

ing specifications or constraints that come from different 

people. One may say FIX(this game I just installed that does not 

work), and the reason it is failing is that the ISP has blocked that 

game. One may say FIX(lousy bandwidth) but the problem is that 

one ha ceeded one’s usage quota and the ISP is ra imiting. 

These are cases where the KP may not be able to resolve the matter. 

What we might strive for, however, is a KP that can either resolve a 

problem or say why not. So one answer to FIX(problem-x) may be 

CANNOT(reason-y). And if the system does fix something, it may 

want to l a  that this happened, ase there is a further 

action that only a  can take. 

Thi ample suggests that the in ction between the user and the 

KP is bi-directional and expressive. And of course, the KP may 

communicate with many entities about a problem. The demand from 

a user FIX(broken-game) might trigger a message back to the user 

that the game is blocked, but might also trigger a message to the ISP 

that it has an unhappy user. 

A further extension of this story is that the KP can provide an 

assistant for user and managers, an agent that watches what the 

people do, and learns over time what is normal and what is not. So a 

KP agent on Dave’s laptop might learn that Dave unplugs it all the 

time, while an agent on Dave’s desktop machine might realize that 

he never disconnects it, and risk bothering Dave to ask if he meant 

to do that. In this way, the problem of fau iagnosis and mitigation 

has a learning component. 

Once the FIX(problem-x) function has been implemented in the KP, 

programs as well as people can use it. As the user’s agent learns, it 

should more and more often give this signal on its own. And other 

programs, such as application code, may detect and signal that 

different parties. Th work manager might say 

ROUTING_PREFERENCE(low-cost links), and an end-user’s 

machine might say FIX(low bandwidth). Again, the KP may be able 

to resolve some of these problems, and might learn over time when 

it is safe for it to act on its own, and when it must kick the problem 

back to the relevant humans in meaningful terms. (Thi ample, by 

the way, illustrates why the KP must be seen as a unified system, not 

as separate systems for fault management and for configuration.) 

The configuration task is not something that happens once at the 

turn-up of th work. It should be something that is happening 

constantly, looking at changin work conditions, application 

demands, and changing constraints. It is also a task that can run 

“recursively”. A globa work is not built top down. It is built 

bottom up, region by region. Each region will first configure itself 
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that attempt to build an overall model o work status [9,15]. Such 
aggregation is important if the failure is hat affects lot of users.  
Automatic (re)configuration: The dynamic routing of the original 
Inte  did not take into account administrative and  
constraints, so routing today is more and more defined by static 

 tables. This means that devices such as routers are 
reasingly ly configured and managed. Static tables and 

 configuration make th work brittle to failure, hard to 
change, and even harder to reason about globally.  Imagine, as part 
of the KP, a configuration manager for a region of the Inte , 
which would accept high-level assertions about how the components 
of work are supposed to arrange themselves, and guide the 
actual detailed configuration accordingly. Examples lude 
controlling the deployment of a consume work in the home, an 
ad ho work in support of a rapid deployment , or work 
for a small business. Successful accomplishment of this project 
could lead to substantial reductions in manpower needed to 
configure and operat works. 
 The KP configuration manager should have enough understanding 
of low-level structure to detect if th work is properly configured 
according to the high-level constraints, to detect if a better 
configuration alternative is available, and to detect if the system 
appears to be corrupted. The reasoning must go in both directions. 
That is, the manager must be able to derive low-level settings given 
high-level goals, priorities and constraints, and it must be able to 
look at existing low-level settings and describe the resulting 
behavior in the high-level terms. 
Again, the interesting problem (once we get the basic idea to work) 
is when the system encounters ing assertions made by 
different parties. Th work manager might say 
ROUTING_PREFERENCE(low-cost links), and an end-user’s 
machine might say FIX(low bandwidth). Again, the KP may be able 
to resolve some of these problems, and might learn over time when 
it is safe for it to act on its own, and when it must kick the problem 
back to the relevant humans in meaningful terms. (Thi ample, by 
the way, illustrates why the KP must be seen as a unified system, not 
as separate systems for fault management and for configuration.) 
The configuration task is not something that happens once at the 
turn-up of th work. It should be something that is happening 
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demands, and changing constraints. It is also a task that can run  
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using its locally specified goals and constraints. But when two 

regions then connect, there may be further constraints that one 

imposes on the other. So a provide work might say to a 

subscribe work: NO_MULTICAST. This might cause the 

subscribe work to change some of its internal organization, 

disable some end-user applications, and so on. 

Support for overla works: If the KP has enough information to 

configure th work itself, that information c so be useful to 

applications that are configuring themselves. For example, we are 

reasingly seeing the development of application-specific overlay 

networks on the Inte . Each overla work uses edge-based 

mechanisms to evaluate the performance of different possible paths 

through the Inte , and seeks to build a set of transport paths that 

effectively route application packets through what appears to be the 

part of the Inte  best suited to the application’s needs. Currently, 

applicatio works must probe the Inte , because there is no 

mechanism for them to learn about the capabilities of th work 

core. The KP would be in a position to aggregate application- and 

network-derived knowledge abou work performance, offer 

applications better information about th work than they could 

learn by probing, and access to control points whose behavior could 

be modified to help better meet the applications’ needs. The KP 

thus enables per-application control over traffic without the need to 

build per-application infrastructure throughout th work. 

 Knowledge-enhanced intrusion detection: There are a number of 

projects (and a number of products) that perform some sort of 

ysis to detec work intrusions. In general they look for 

patterns in data observed somewhere in th work. The current 

generation of these tools trigger both false positives and false 

negatives. It has been hypothesized that a next generation of tools 

for intrusion detection will require that observations from several 

points in th work will have to be correlated, in order to get a 

more robust and useful signal. The development of the knowledge 

ne provides a basis to implement this data gathering and 

correlation. 

• Is distributed - KP functionality for different regions of the 

network is physically and logically decentralized. 

Is bottom up - simple entities (e.g. web servers) can compose 

into larger, more complex entities (e.g. a web farm) as needed, 

and decompose themselves from the system as appropriate. 

This is a recursive process, that may proceed on many levels. 

Is constraint driven - the basic pr iple is that the system can, 

and may, adopt (or not) any behavior that is not specifically 

constrained. 

Moves from simple to complex. Speaking generally, the act of 

composing a set o works to form a larger one ces more 

requirements or constraints on the behavior of eac work. A 

trivial example would be that a standalone I work can use 

a wide range of addresses, but connecting it to a large work 

constrains the range of options in this regard. 

• 

• 

• 

Our first objective for the KP system architecture is that it support 

this distributed, compositional , providing the necessary 

enabling ions and capabilities. 

ontrast with the distributed organization of the KP, we have 

argued in previous sections of this paper that KP may often benefit 

from taking a global  - integrating observations and 

conclusions from many points in th work. Key implications of 

this are that: 

• Data and knowledge integration is a central function of the KP. 

The KP must be able to collect, filter, reduce, and route 

observations, assertions, and conclusions from different parts 

of th work to points where they are useful. 

The KP must operate successfully in the presence of imperfect 

information. Because this global  is both physically 

large and spans multiple administrative entities, the cognitive 

algorithms of the KP must be prepared to operate in the 

presence of limited and uncertain inputs. 

The KP must reason about information tradeoffs. Sometimes, a 

global  may be critical. Other times, it may be 

unimportant, or merely somewhat useful. The KP must be 

prepared to reason about the tradeoffs involved in using data of 

differing scope. For instance, diagnosing a web server failure 

may, or more likely, may not require polling for user 

experience from locations far away. A KP may need to employ 

introspective meta-reasoning to act most effectively in these 

circumstances. 

• 

• 

4. Knowledge ne Architecture 
Previous sections of this paper have outlined the goals we set for a 

knowledge ne. In this section, we consider aspects of its system 

structure. Our discussion is speculative: any successful KP 

architecture will be shaped by a number of requirements and 

constraints, not all of which are apparent today. At its highest level 

the architecture of the KP will be shaped heavily by two broad 

s: its distributed, compositional structure, and its multi-scale, 

potentially global knowledge . 

Our ultimate objective is tha worked systems should organize 

themselves, under the constraints and guidance of external inputs, to 

meet the goals of their stakeholders. Even in the near term, the KP 

must respect and build on the fact tha works have internal 

structure and dynamics -- larg works are composed by 

interconnectin aller ones, participants come and go, and 

relationships between the owners, operators and users of different 

networks may change even when the physical structure does not. 

This implies that the knowledge ne serving work is not a 

globally engineered entity, but is instead an autonomously created 

structure that is recursively, dynamically, and continuously 

composing and decomposing itself from smaller sub- nes. This 

requirement argues that the KP: 

Our second objective for the KP system architecture is that to the 

extent possible it develop, utilize, and reason about information at 

whatever scope is appropriate for the problem it is addressing. 

4.1 Functional and Structural Requirements 
The above objectives, together with the core goals of the knowledge 

ne, lead us to several top-level functional and structural 

architectural requirements. We discuss four of these below. 

4.1.1 Core Foundation 
The heart of the knowledge ne is its ability to integrate behavioral 

models and reasoning processes into a distributed worked 

environment. The first component of this ability is support for the 

creation, storage, propagation and discovery of a variety of 

information, likely luding observations, which describe current 

conditions; assertions, which capture high-level goals, intentions 

and constraints o work operations; and ex nations, which are 
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using its locally specified goals and constraints. But when two 
regions then connect, there may be further constraints that one 
imposes on the other. So a provide work might say to a 
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disable some end-user applications, and so on.  
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must respect and build on the fact tha works have internal 
structure and dynamics -- larg works are composed by 
interconnectin aller ones, participants come and go, and 
relationships between the owners, operators and users of different 
networks may change even when the physical structure does not. 
This implies that the knowledge ne serving work is not a 
globally engineered entity, but is instead an autonomously created 
structure that is recursively, dynamically, and continuously 
composing and decomposing itself from smaller sub- nes. This 
requirement argues that the KP: 

• Is distributed - KP functionality for different regions of the 
network is physically and logically decentralized. 

• Is bottom up - simple entities (e.g. web servers) can compose 
into larger, more complex entities (e.g. a web farm) as needed, 
and decompose themselves from the system as appropriate. 
This is a recursive process, that may proceed on many levels. 

• Is constraint driven - the basic pr iple is that the system can, 
and may, adopt (or not) any behavior that is not specifically 
constrained. 

• Moves from simple to complex. Speaking generally, the act of 
composing a set o works to form a larger one ces more 
requirements or constraints on the behavior of eac work. A 
trivial example would be that a standalone I work can use 
a wide range of addresses, but connecting it to a large work 
constrains the range of options in this regard. 

Our first objective for the KP system architecture is that it support 
this distributed, compositional , providing the necessary 
enabling ions and capabilities. 

ontrast with the distributed organization of the KP, we have 
argued in previous sections of this paper that KP may often benefit 
from taking a global  - integrating observations and 
conclusions from many points in th work.  Key implications of 
this are that: 

• Data and knowledge integration is a central function of the KP. 
The KP must be able to collect, filter, reduce, and route 
observations, assertions, and conclusions from different parts 
of th work to points where they are useful. 

• The KP must operate successfully in the presence of imperfect 
information. Because this global  is both physically 
large and spans multiple administrative entities, the cognitive 
algorithms of the KP must be prepared to operate in the 
presence of limited and uncertain inputs. 

• The KP must reason about information tradeoffs. Sometimes, a 
global  may be critical. Other times, it may be 
unimportant, or merely somewhat useful. The KP must be 
prepared to reason about the tradeoffs involved in using data of 
differing scope. For instance, diagnosing a web server failure 
may, or more likely, may not require polling for user 
experience from locations far away. A KP may need to employ 
introspective meta-reasoning to act most effectively in these 
circumstances. 

Our second objective for the KP system architecture is that to the 
extent possible it develop, utilize, and reason about information at 
whatever scope is appropriate for the problem it is addressing. 

4.1 Functional and Structural Requirements 
The above objectives, together with the core goals of the knowledge 

ne, lead us to several top-level functional and structural 
architectural requirements. We discuss four of these below. 

4.1.1 Core Foundation 
The heart of the knowledge ne is its ability to integrate behavioral 
models and reasoning processes into a distributed worked 
environment.  The first component of this ability is support for the 
creation, storage, propagation and discovery of a variety of 
information, likely luding observations, which describe current 
conditions; assertions, which capture high-level goals, intentions 
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an example of how knowledge itself is embodied—ex nations 

take observations and assertions and map them to conclusions. 

To learn about and alter i vironment, the knowledge ne must 

access, and manage, what the cognitive community calls sensors and 

actuators. Sensors are entities that produce observations. Actuators 

are entities that change behavior (e.g., change routing tables or bring 

links up or down). So, for instance, a knowledge application that 

sought to operate work according to certain policies might use 

sensors to collect observations on th work, use assertions to 

determine if th work’s behavior complies with , and, if 

necessary, use actuators to change th work’s behavior. 

The most central aspect of the knowledge ne is its support for 

cognitive computations. This is a challenging problem because the 

dynamic and distributed KP environment is not well matched to the 

classical knowledge level algorithms and agent architectures that 

underpin much of current AI. Most AI algorithms are not designed 

to work in a highly distributed context, and direct experience in 

building a large distributed data management system with embedded 

cognitive abilities is limited.1 What is needed are robust, tractable 

and on-line algorithms for environments that are highly dynamic, 

partially observable, stochastic and error prone. The field of Multi- 

Agent Systems [22] has had some initial success in solving these 

problems, although those addressed to date typically lack the 

dynamicity required for the knowledge ne. Thus refinement of 

this portion of the knowledge ne architecture, its infrastructure 

support for a range of appropriate cognitive algorithms, is likely to 

progress onjunction with further research ognitive systems 

themselves. 

4.1.2 Cross-  and Multi-  Reasoning 
Where does the KP “run”? The composed, regional structure of the 

KP might suggest that a specific server would support the part of the 

KP that “reasons about” a region, for example an Inte  AS. One 

possibility is that the administrator of the AS would run the KP that 

oversaw that AS. At a more  level, one might state this 

structuring strategy as “each region is responsible for reasoning 

about itself.” 

This is a bad idea, for several reasons. If the AS is down, this could 

render the relevant KP information unreachable at exactly the wrong 

time. The administrator of an AS might wish to limit the conclusions 

that the KP reached about it, perhaps to remove knowledge that 

seems unflattering, while others may choose to reach those 

conclusions anyway. These examples show that reasoning about an 

AS occurs tly of the AS; a fact that should be reflected in 

the system structure. Different parts of the KP might tly 

reason about an AS, and compare answers, to detect that part of the 

KP is corrupted. This shows that there should be no specific 

physical relationship between a region of th work and the KPs 

reasoning engines related to that region. 

A more radical possibility is that multiple entities compete to 

provide information about a given AS. Each entity collects its own 

data and sells its observations. The KP could seek information from 

whichever entity or entities it believes provides the most accurate 

and timely (or most cost effective) information. This ``knowledge 

market ce'' creates a host of architectural challenges, ranging from 

how to reason about information from multiple providers (even if 

three different companies l you the same thing about an AS, it 

may turn out that they're all reselling data from one Inte  weather 

service: if you really want a second opinion, how do you find the 

second weather service?) to how to design KP protocols to 

discourage different knowledge companies from subtly “enhancing” 

the KP protocols or data in ways that make it harder for users to 

concurrently use the servers of other knowledge providers? 

This discussion demonstrates the potential richness of information 

flow in the KP. Messages need to flow to more than one location so 

that redundant reasoning can occur – and how a message flows may 

depend on who asks it. Different parts of the KP may reach different 

conclusions, and reconciling these is as important as is dealing with 

omplete input data. 

4.1.3 Data and Knowledge Routing 
We have argued that the KP will benefit from gaining a global 

 on th work it serves. It is useful to consider how this 

 might come about. I y smal work, it might 

theoretically be possible to collect all relev formation, and 

flood that information to each node in th work (more precisely, 

in the distributed KP). 

This idea is clearly impractical in large works. First, the sheer 

volume of information is technically daunting, requiring a highly 

scalable solution. Beyond this, s such as competition and 

privacy come into y. In work of any size, it is necessary to 

limit and optimize the collection and routing of information. More 

sophistication is needed. 

We suggest that the KP architecture should implement a framework 

for knowledge management and routing characterized by two 

attributes. It is knowledge-driven - the routing system itself 

orporates information about what knowledge is most useful in 

different circumstances, and uses scalable distributed techniques to 

filter observations and “attract'' the most relevant observations 

towards potential customers. It understands tradeoffs - it may 

orporate the concept of quality - reasoning about producing 

better or less good answers with correspondingly more or less effort, 

time, bandwidth, etc., rather than just producing “an” answer. 

4.1.4 Reasoning about Trust and Robustness 
The KP's combination of compositional structure and global 

 creates challenges to achieving a robust and trustworthy 

design. Because a functioning KP is formed at any time from the 

composition of the participatin works, the architecture must 

reflect the fact that parts of the KP may be corrupted or broken, that 

some participants may lie or export delibera y flawed reasoning, 

and that system actions must be based on inputs that may be partial, 

outdated or wrong. 

This suggests that the KP may need to build, maintain, and reason 

about trust relationships among its components and participants. 

Portions of the KP that misbehave may be deemed untrustworthy by 

other portions, and this information may be propagated among 

portions that have decided to trust each other. In this way, a web of 

trust can grow that identifies KP elements that seem to be 

trustworthy and shuns elements that are not. This introspection 

would likely require the development of trust models, and the use of 

1One early and related attempt, the DARPA-sponsored Automate work 

Management (ANM) project, sought to build work-wide MIB collector 

combined with AI tools [7]. The ANM experience was that collecting data 

was relatively easy, but getting the data to the right ce was hard – it was 

easy to overwhelm links with management traffic if information was 

circulated too aggressively. 
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