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—We study online compound decision problems in the 
context of sequential prediction of real valued sequences. In 
particular, we consider finite state (FS) predictors that are 
constructed based on the sequence history, whose length is quite 
large for applications involving big data. To mitigate overtrain- 
ing problems, we define hierarchical equivalence classes and 
apply the exponentiated gradient (EG) algorithm to achieve 
the performance of the best state assignment defined on the 
hierarchy. For a sequence history of length h, we combine 

h 

more than 2(h/e) different FS predictors each 
corresponding to a different combination of equivalence classes and asymp- 
totically achieve the performance of the best FS predictor with 
computational complexity only linear in the pattern length h. Our 
approach is generic in the sense that it can be applied to 
general hierarchical equivalence class definitions. Although we 
work under accumulated square loss as the performance 
measure, our results hold for a wide range of frameworks and loss 
functions as detailed in the paper. 
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are comprehensive such that they hold for most hierarchical state definitions a ined later in the paper. We also work in a deterministic setup where we refrain from any statistical assumptions and our results are guaranteed to hold in an individual sequence manner [13], [14]. Sequential predictors using FS machines (or certain pat- tern matching algorithms) are extensively studied both in computational learning theory [13], [15] and signal process- ing [16], [17] li tures s e this structure naturally arises in different real life applications [1]–[3]. As an example, hierarchical models are widely used in service classifi- cation/discovery [4] and recommendation systems [8]. In a similar context, there exist universal binary prediction algorithms [18] th hieve the performance of any finite state predictor in the long run. However, note that the results of [18] are asymptotical, i.e., the data length goes to infinity, and states of the finite state machines or transitions between them are fixed, which is not the case for fini ength sequences or for the framework considered in here. In this paper, we first use the relative ordering patterns of the sequence history as our states for ease of exposi- tion (whereas our results are generic for any hierarchical structure). In particular, at each time t, we use the last h 

I. INTRODUCTION We investigate online compound decision problems that arise in several different data mining applications, such as financial market [1] and trend [2] yses, intrusion detection [3], service discovery [4]–[8], energy management [9], and cloud computing [10]. From a unified point of view, in such problems, we sequentially observe a real valued sequence x1, x2, . . . and produce a decision (or an action) 
samples of the sequence (xt−h+1,..., xt) to define relative ordering patterns. S e there exist a massive amount of data to be processed, we need to use large values of h in order to exploit the information in the sequence and attain a satisfac- tory performance. A sequence history of length h can have d̂t at each time t based on the past x1, x2 , . . . ,  xt. After the desired output dt is revealed, we suffer a loss and our h! ≈ (h/e)h different ordering patterns, e.g., for h =  10, goal is to minimize the accumulated (and possibly weighted) loss as much as possible while using a limited amount of information from the past. As an example, in generic online prediction problems under the square error loss, the output at time t, i.e., dˆt, corresponds to an estimate of the next data 
there are approxima y 10! ≈ (10/e)10 = 4.54 × 105 different ordering patterns. Hence, training a sequential FS predictor directly using this number of patterns as states is impractical. To mitigate this overtraining issue, we define a hierarchi- cal structure where we tie together certain patterns to form intermediate states or equivalence classes each representing a collection of the original patterns. Here, we use the location of the larges ement for grou  the patterns in a recursive manner. Certain specific combinations of these equivalence classes can be used to construct sequential FS predictors. 

point xt+1, where the algorithm suffers the loss (xt+1 −dˆt)2 after xt+1 is revealed. The algorithm can then adjust itself in order to reduce the future losses. We investigate a specific version of the sequential com- pound decision problems, where we consider FS predictors. In particular, we use a hierarchical structure (such as the relative ordering pattern of the sequence history [11], [12]) to construct our states. However, our algorithm and results h 

2(h/e) With our approach we represent more than differ- ent FS predictors corresponding to different permutations 
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I. INTRODUCTION

We investigate online compound decision problems that

arise in several different data mining applications, such

as financial market [1] and trend [2] yses, intrusion

detection [3], service discovery [4]–[8], energy management

[9], and cloud computing [10]. From a unified point of view,

in such problems, we sequentially observe a real valued

sequence x1, x2, . . . and produce a decision (or an action)

d̂t at each time t based on the past x1, x2, . . . , xt. After

the desired output dt is revealed, we suffer a loss and our

goal is to minimize the accumulated (and possibly weighted)

loss as much as possible while using a limited amount of

information from the past. As an example, in generic online

prediction problems under the square error loss, the output

at time t, i.e., d̂t, corresponds to an estimate of the next data

point xt+1, where the algorithm suffers the loss (xt+1−d̂t)
2

after xt+1 is revealed. The algorithm can then adjust itself

in order to reduce the future losses.

We investigate a specific version of the sequential com-

pound decision problems, where we consider FS predictors.

In particular, we use a hierarchical structure (such as the

relative ordering pattern of the sequence history [11], [12])

to construct our states. However, our algorithm and results

are comprehensive such that they hold for most hierarchical

state definitions a ined later in the paper. We also work

in a deterministic setup where we refrain from any statistical

assumptions and our results are guaranteed to hold in an

individual sequence manner [13], [14].

Sequential predictors using FS machines (or certain pat-

tern matching algorithms) are extensively studied both in

computational learning theory [13], [15] and signal process-

ing [16], [17] li tures s e this structure naturally arises

in different real life applications [1]–[3]. As an example,

hierarchical models are widely used in service classifi-

cation/discovery [4] and recommendation systems [8]. In

a similar context, there exist universal binary prediction

algorithms [18] th hieve the performance of any finite

state predictor in the long run. However, note that the results

of [18] are asymptotical, i.e., the data length goes to infinity,

and states of the finite state machines or transitions between

them are fixed, which is not the case for fini ength

sequences or for the framework considered in here.

In this paper, we first use the relative ordering patterns

of the sequence history as our states for ease of exposi-

tion (whereas our results are generic for any hierarchical

structure). In particular, at each time t, we use the last h
samples of the sequence (xt−h+1, . . . , xt) to define relative

ordering patterns. S e there exist a massive amount of data

to be processed, we need to use large values of h in order to

exploit the information in the sequence and attain a satisfac-

tory performance. A sequence history of length h can have

h! ≈ (h/e)h different ordering patterns, e.g., for h = 10,

there are approxima y 10! ≈ (10/e)10 = 4.54 × 105

different ordering patterns. Hence, training a sequential FS

predictor directly using this number of patterns as states is

impractical.

To mitigate this overtraining issue, we define a hierarchi-

cal structure where we tie together certain patterns to form

intermediate states or equivalence classes each representing a

collection of the original patterns. Here, we use the location

of the larges ement for grou the patterns in a recursive

manner. Certain specific combinations of these equivalence

classes can be used to construct sequential FS predictors.

With our approach we represent more than 2(h/e)
h

differ-

ent FS predictors corresponding to different permutations
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and combinations of these equivalence classes. We then apply the EG algorithm [19] to asymptotically achieve the performance of the best FS predictor in the hierarchy with computational complexity only linear in the pattern length. Our approach is generic such that our algorithm can be applied to a wide range of hierarchical equivalence class definitions (other than order preserving patterns or location of the larges ement) to asymptotically achieve the performance of the optimal sequential FS predictor with the best state assignment. The remainder of the paper is as follows. In Section II, we provide the problem description and introduce a method to create FS predictors. In Section III, we then introduce an online algorithm to comb he outputs of all doubly exponential number of different FS predictors with a computational complexity only linear in the hierarchy depth. We illustrate the performance of the proposed algorithm over variou periments in Section IV. The paper concludes with certain remarks in Section V II. FS PREDICTORS BASED ON ORDER PRESERVING PATTERNS In order to produce the output dˆt, we use finite state (FS) predictors. In general, a FS predictor has a prediction function 

(1,3,2) (2,3,1) 

(1,2,3) (3,2,1) 

(2,1,3) (3,1,2) 

Figure 1: FS Diagram for h = 3, where all allowable transitions are drawn. 
( ) or the recursive least squares (RLS) algorithms. However, for fini ength sequences, such an approach can only provide satisfactory results if we have enough data to learn the optimal batch predictor at each state, i.e., there should be enough occurrences of each state pattern in the past x 1 , . . . ,  xt. However, even for a moderate value of 
h that define meaningful patterns in real life applications involving big data [11], [12], say for h = 10, the number of patterns grows as h! = 10!. In this sense, to train a sequential predictor for each ordering patterns, we require a substantial amount of past observations, which is not available in most real life applications even for stationary data [16]. This problem is more severe for nonstationary data. One can mitigate this problem by defining “super set” equivalence classes or tying certain states together as widely used in speech recognition applications when there are not enough data to adequa y train all the phoneme states [20]. 

d t̂ = f (st), (1) where s ∈ S is the current state taking values from a finite t set S = {1 , . . . ,  S}, and upon the observation of the new data xt+1, the states are traversed according to the next state function (2) st+1 = g(st, xt+1), where f and g are arbitrary functions. The accumulated loss   n 
(dt − dˆt)2 over any of this FS predictor is given by t=1 length n. We use the relative ordering pattern of the past sequence Although a sequence of length h, i.e., (xt−h+1,..., xt), as our states as shown in Figure 1. In particular, at each time t, we use the last h samples of the sequence his- can have h! different ordering patterns, most of these pat- terns share similar characteristics that can be exploited to group (or tie) them together to form intermediate states each representing a collection of the original patterns. In this paper, we use the location of the larges ement as the ma haracteristics in order to group the patterns in an hierarchical manner. However, our methods are generic such that they cover other hierarchical equivalence class definitions as detailed in Section III. For example in Figure 2, we show how we hierarchi- cally divide all possible patterns into different groups or equivalence classes for h = 3. At the first level, i.e., level-1, in the figure, we first group the ordering patterns into h different equivalence classes based on the location 

tory xt−h+1,..., xt to define relative ordering patterns. As an example, for h =  3,  we  have 6 different possible patterns,  i.e.,  (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), 
(3, 2, 1), where “3” represents the location of the largest value and “1” represents the location of the smallest value, e.g., the sequence (xt−2, xt−1, xt) = 
(10.2, 13.5, −1) corresponds to the pattern or ordering 
(2, 3, 1). Given h and this set of ordering patterns, one can arbitrarily assign each pattern to a state so that 
st ∈ {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)} for each t. After fixing the state assignments, st+1 is selected after observing xt+1. Given the state definitions, we can easily construct a sequential algorithm that asymptotically achieves the per- formance of the optimal batch predictor (which uses the same states) [13], such as using the least mean squares of the larges ement, e.g., the equivalence class c1,1 represents all the ordering patterns that have the largest element at the first location xt, where these patterns are 
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and combinations of these equivalence classes. We then

apply the EG algorithm [19] to asymptotically achieve

the performance of the best FS predictor in the hierarchy

with computational complexity only linear in the pattern

length. Our approach is generic such that our algorithm

can be applied to a wide range of hierarchical equivalence

class definitions (other than order preserving patterns or

location of the larges ement) to asymptotically achieve

the performance of the optimal sequential FS predictor with

the best state assignment.

The remainder of the paper is as follows. In Section

II, we provide the problem description and introduce a

method to create FS predictors. In Section III, we then

introduce an online algorithm to comb he outputs of all

doubly exponential number of different FS predictors with a

computational complexity only linear in the hierarchy depth.

We illustrate the performance of the proposed algorithm over

variou periments in Section IV. The paper concludes with

certain remarks in Section V

II. FS PREDICTORS BASED ON ORDER PRESERVING

PATTERNS

In order to produce the output d̂t, we use finite state

(FS) predictors. In general, a FS predictor has a prediction

function

d̂t = f(st), (1)

where st ∈ S is the current state taking values from a finite

set S = {1, . . . , S}, and upon the observation of the new

data xt+1, the states are traversed according to the next state

function

st+1 = g(st, xt+1), (2)

where f and g are arbitrary functions. The accumulated loss

of this FS predictor is given by
∑n

t=1(dt − d̂t)
2 over any

length n.

We use the relative ordering pattern of the past sequence

as our states as shown in Figure 1. In particular, at each

time t, we use the last h samples of the sequence his-

tory xt−h+1, . . . , xt to define relative ordering patterns.

As an example, for h = 3, we have 6 different possible

patterns, i.e., (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2),
(3, 2, 1), where “3” represents the location of the

largest value and “1” represents the location of the

smallest value, e.g., the sequence (xt−2, xt−1, xt) =
(10.2, 13.5,−1) corresponds to the pattern or ordering

(2, 3, 1). Given h and this set of ordering patterns, one

can arbitrarily assign each pattern to a state so that

st ∈ {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}
for each t. After fixing the state assignments, st+1 is selected

after observing xt+1.

Given the state definitions, we can easily construct a

sequential algorithm that asymptotically achieves the per-

formance of the optimal batch predictor (which uses the

same states) [13], such as using the least mean squares

(1,2,3) 

(2,1,3) (3,1,2) 

(1,3,2) (2,3,1) 

(3,2,1) 

Figure 1: FS Diagram for h = 3, where all allowable

transitions are drawn.

( ) or the recursive least squares (RLS) algorithms.

However, for fini ength sequences, such an approach can

only provide satisfactory results if we have enough data to

learn the optimal batch predictor at each state, i.e., there

should be enough occurrences of each state pattern in the

past x1, . . . , xt. However, even for a moderate value of

h that define meaningful patterns in real life applications

involving big data [11], [12], say for h = 10, the number of

patterns grows as h! = 10!. In this sense, to train a sequential

predictor for each ordering patterns, we require a substantial

amount of past observations, which is not available in most

real life applications even for stationary data [16]. This

problem is more severe for nonstationary data. One can

mitigate this problem by defining “super set” equivalence

classes or tying certain states together as widely used in

speech recognition applications when there are not enough

data to adequa y train all the phoneme states [20].

Although a sequence of length h, i.e., (xt−h+1, . . . , xt),
can have h! different ordering patterns, most of these pat-

terns share similar characteristics that can be exploited to

group (or tie) them together to form intermediate states

each representing a collection of the original patterns. In

this paper, we use the location of the larges ement as

the ma haracteristics in order to group the patterns in

an hierarchical manner. However, our methods are generic

such that they cover other hierarchical equivalence class

definitions as detailed in Section III.

For example in Figure 2, we show how we hierarchi-

cally divide all possible patterns into different groups or

equivalence classes for h = 3. At the first level, i.e.,

level-1, in the figure, we first group the ordering patterns

into h different equivalence classes based on the location

of the larges ement, e.g., the equivalence class c1,1
represents all the ordering patterns that have the largest

element at the first location xt, where these patterns are
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III.  A UNIVERSAL TREND PREDICTOR BASED ON ORDER PRESERVING PATTERNS c c c c c c 2,1 2,2 2,3 2,4 2,5 2,6 Level - 2 
(1,2,3) (2,1,3) (1,3,2) (2,3,1) (3,1,2) (3,2,1) Suppose we construct all possible FS predictors dˆ{k}, k = t 

1 , . . . ,  Kh, and run them in parallel to match patterns and predict dt. We next use the EG algorithm [19] to combine the outputs of all FS predictors to produce the final output c1,1 

(.,.,3) 

c1,2 

(.,3,.) 

c1,3 

(3,.,.) 
Level - 1 

Kh   { k} { k} d w d ,  ̂  ̂ (3) t t t 
k=1 

c0,1 

(.,.,.) 
Level - 0 yielding the error et  dt − dˆt, and update the combination weights using     Figure 2: All equivalence classes for the FS diagram with 

h = 3. { k} { k}  ̂w exp  −μd e  t−1 t−1  t −1 {k} (4)    , wt =   K {r} ˆ{r} h w exp  −μd et−1 t−1 t−1 r=1 where μ  > 0 is a positive constant controlling the learn- 
(·, ·, 3) = {(1, 2, 3), (2, 1, 3)}. At the second level, c1,1 =  ing rate. The weighted mixture algorithm (3) sequentially achieves the performance of the best algorithm in the mix- ture [19], i.e., when applied to any x1, x2 ,. ..  and d1, d2,.. ., this algorithm has the performance 

i.e., level-2, we continue to separate the patterns into finer groups. S e the length of the pattern is h = 3, we only have h − 1 = 2 levels to consider. Each equiva- lence class at the same level, e.g., c1,1, c1 ,2,..., c1,h, rep-    2 n n     resents a disjoint grou  of the original patterns S = 1 1 { k} ˆ  ̂{(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}.      can comple y partition the set of patterns S into hierarchi- ln K 
n 

h cal equivalence classes in this way and each equivalence class in Figure 2 represents the set of patterns that are the union of the set of patterns of their subclasses. Certa ollection of the equivalence classes in Figure 
, (5) + O for any n without any knowledge of the optimal dˆ{k}, the t future of the sequences or the data length n. We emphasize that there exist variou tensions of the basic update (4) in the context of tracking the best expert or the best linear combination [21], for different loss functions [22], in a stochastic context [23] and in different frameworks [13]. We emphasize that our derivations directly cover these frameworks. Note that even for a modera ength pattern such as h = 

2 comple y covers all the original ordering patterns S, such as {(·, ·, 3), (·, 3, ·), (3, ·, ·)}. Hence, each of such configurations can be used to construct a FS predictor, whose states are these equivalence classes. With our representation, 
h ≈ 2(h/e) for a length h history, we can have K different h tying configurations each of which comple y covers the whole pattern set S (s e Kh+1 = Kh+1 + 1). h 5 

5, we have K ≈ 2(5/e) . Hence, in this form the algorithm d̂ { k} One of these FS predictors, , k = 1 , . . . ,  Kh, is h t (3) cannot be directly implemented s e we need to run K optimal for the current observations and the optimal FS predictor can change over time. As a comparison, when there is not enough data, the coarser FS predictor having h FS predictors in parallel and monitor their performances to construct (3). We next introduce a method that implements (3) with complexity only linear in the pattern length h. For an efficient implementation of (3), we first note that we can write (4) as the equivalence classes {c1,1, c1,2, c1,3} i pected to learn much faster than the finer FS predictor having the equiva- lence classes {c2,1, c2,2, c2,3, c2,4, c2,5, c2,6}. However, one       expects the finer model to perform bet s the data length reases due to its higher modeling power for stationary data. However, in this paper, instead of committing to −1 {k} t  ̂exp  −μ d e z z z=1 {k}    , (6) wt =     t−1 ˆ{r} K h exp  −μ dz ez r=1 z=1 one of these models or switching between the models, we next introduce a mixture-of-experts approach to adaptively after some algebra, when w{k} = 1/Kh, ∀k = 1 , . . . ,  Kh, 0 combine all of these FS predictors, dˆ{k}, k = 1,..., Kh, to which yields a recursive formulation later in the paper. Before providing the recursive formulation, we observe that although there are Kh FS predictors in the mixture (3) (with different weights), the states used by these FS predictors lude a relatively small number of equivalence classes shown in Figure 2. To efficiently use this observation, we 
t build a sequential predictor that is universal over all ordering patterns (with computational complexity only linear in the pattern length h). Hence, the computational complexity of our algorithm is highly scalable, whi akes our algorithm very suitable for applications involving big data. 
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Figure 2: All equivalence classes for the FS diagram with

h = 3.

c1,1 = (·, ·, 3) = {(1, 2, 3), (2, 1, 3)}. At the second level,

i.e., level-2, we continue to separate the patterns into finer

groups. S e the length of the pattern is h = 3, we

only have h − 1 = 2 levels to consider. Each equiva-

lence class at the same level, e.g., c1,1, c1,2, . . . , c1,h, rep-

resents a disjoint grou of the original patterns S =
{(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}. One

can comple y partition the set of patterns S into hierarchi-

cal equivalence classes in this way and each equivalence

class in Figure 2 represents the set of patterns that are the

union of the set of patterns of their subclasses.

Certa ollection of the equivalence classes in Figure

2 comple y covers all the original ordering patterns S ,

such as {(·, ·, 3), (·, 3, ·), (3, ·, ·)}. Hence, each of such

configurations can be used to construct a FS predictor, whose

states are these equivalence classes. With our representation,

for a length h history, we can have Kh ≈ 2(h/e)
h

different

tying configurations each of which comple y covers the

whole pattern set S (s e Kh+1 = Kh+1
h + 1).

One of these FS predictors, d̂
{k}
t , k = 1, . . . ,Kh, is

optimal for the current observations and the optimal FS

predictor can change over time. As a comparison, when

there is not enough data, the coarser FS predictor having

the equivalence classes {c1,1, c1,2, c1,3} i pected to learn

much faster than the finer FS predictor having the equiva-

lence classes {c2,1, c2,2, c2,3, c2,4, c2,5, c2,6}. However, one

expects the finer model to perform bet s the data length

reases due to its higher modeling power for stationary

data. However, in this paper, instead of committing to

one of these models or switching between the models, we

next introduce a mixture-of-experts approach to adaptively

combine all of these FS predictors, d̂
{k}
t , k = 1, . . . ,Kh, to

build a sequential predictor that is universal over all ordering

patterns (with computational complexity only linear in the

pattern length h). Hence, the computational complexity of

our algorithm is highly scalable, whi akes our algorithm

very suitable for applications involving big data.

III. A UNIVERSAL TREND PREDICTOR BASED ON

ORDER PRESERVING PATTERNS

Suppose we construct all possible FS predictors d̂
{k}
t , k =

1, . . . ,Kh, and run them in parallel to match patterns and

predict dt. We next use the EG algorithm [19] to combine

the outputs of all FS predictors to produce the final output

d̂t �
Kh∑
k=1

w
{k}
t d̂

{k}
t , (3)

yielding the error et � dt − d̂t, and update the combination

weights using

w
{k}
t =

w
{k}
t−1 exp

(
−μd̂{k}t−1et−1

)
∑Kh

r=1 w
{r}
t−1 exp

(
−μd̂{r}t−1et−1

) , (4)

where μ > 0 is a positive constant controlling the learn-

ing rate. The weighted mixture algorithm (3) sequentially

achieves the performance of the best algorithm in the mix-

ture [19], i.e., when applied to any x1, x2, . . . and d1, d2, . . .,
this algorithm has the performance

1

n

n∑
t=1

(dt − d̂t)
2 ≤ min

k=1,...,Kh

1

n

n∑
t=1

(
dt − d̂

{k}
t

)2
+O

(
lnKh

n

)
, (5)

for any n without any knowledge of the optimal d̂
{k}
t , the

future of the sequences or the data length n. We emphasize

that there exist variou tensions of the basic update (4) in

the context of tracking the best expert or the best linear

combination [21], for different loss functions [22], in a

stochastic context [23] and in different frameworks [13].

We emphasize that our derivations directly cover these

frameworks.

Note that even for a modera ength pattern such as h =
5, we have Kh ≈ 2(5/e)

5

. Hence, in this form the algorithm

(3) cannot be directly implemented s e we need to run Kh

FS predictors in parallel and monitor their performances to

construct (3). We next introduce a method that implements

(3) with complexity only linear in the pattern length h.

For an efficient implementation of (3), we first note that

we can write (4) as

w
{k}
t =

exp
(
−μ∑t−1

z=1 d̂
{k}
z ez

)
∑Kh

r=1 exp
(
−μ∑t−1

z=1 d̂
{r}
z ez

) , (6)

after some algebra, when w
{k}
0 = 1/Kh, ∀k = 1, . . . ,Kh,

which yields a recursive formulation later in the paper.

Before providing the recursive formulation, we observe that

although there are Kh FS predictors in the mixture (3) (with

different weights), the states used by these FS predictors

lude a relatively small number of equivalence classes

shown in Figure 2. To efficiently use this observation, we
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define intermediate sums that represent the total accumulated function of loss up to that point as follows { c  } assign a predictor d ̂  to each equivalence class in Figure i,j 

t 2. Each equivalence class predictor constructs its output based on the past sequence using a sequential learning algorithm such as the  or RLS algorithms.   { c  } { c  } T {n}, (12) i,j i,j T = L + t t t Each FS predictor, dˆ{k}, uses a finite set of these equiva- n∈C{ci,j } 
t lence class predictors, e.g., dˆ{1} with {c1,1, c1,2, c1,3} uses t { c  } { c  } { c  } for each equivalence class ci,j, where C{ci,j } represents the upper branches of the equivalence class ci,j, e.g., for c0,1,  ̂  ̂  ̂the equivalence class predictors d , d , d . 1,1 1,2 1,3 

t t t If we observe at time t the pattern (xt−2, xt−1, xt) = 
C{c0,1 } = {c1,1, c1,2, c1,3}. To start the recursion (12) from { 1 }  ̂(10.2, 13.5, −1) with ordering (2, 3, 1), then d uses the t { c } the top of Figure 2, at level i = h − 1, we set T  ̂{ c  } ˆ{1} h − 1,j state predictor of dt to give its final output as dt = = 1,2 

t { c } { c  } { c  } . If we open the recursive formulation for T  ̂ L h − 1,j 0,1 
d , s e (2, 3, 1) ∈ c . In this sense, although there 1,2 

t t 1,2 t using the relations (11) and (12), we get after some algebra are Kh different FS predictors, at any time t, each of these { c  } L = T , i.e., the recursive calculation (12) from top to FS predictors uses the output of only one of the m different 0,1 
t t h bottom yields Lt at the bottom. { c  }  ̂equivalence class predictors, d , based on the current i,j 

t 
ii) Suppose after we observe (xt−h+1, . . . , xt), we pro- pattern. duced our prediction dˆt, the true data dt is revealed and To calculate (3) and (4), we first show i) how the total we get et = dt − dˆt. Our task is now to calculate sum in the denominator of (6) can be recursively calculated. Lt+1 also from Lt. Naturally, a recursive formulation for Based on this recursion, we then introduce ii) a sequential- in-time update of this sum, which yields the numerator of (6). This recursive formulation and the sequential-in- time update of the denominator of (6) are then used to iii) calculate the combined weights in a recursive form with a computational cost only linear in the pattern length h. In the following, we rigorously derive these steps. 

i) The total loss in the denominator of (6) is defined as 

Lt+1 { c  } { c  } holds as in (12), where we have T and L terms i,j i,j 

t+1 t+1 { c  } { c  } instead of T and L terms. However, suppose i,j i,j 

t t 
(xt−h, . . . , xt) leads to a particular pattern. Then, from time t to t + 1, due to the indicator function in (9), only the equivalence classes who match the particular pattern of 
(xt−h+1, . . . , xt) are effected by this update. For all other equivalence classes that do not lude this particular pattern, { c  } { c  } { c  } { c  } we have T = T and L = L . Hence, we i,j i,j i,j i,j 

t+1 t t+1 t Kh   { c  } start from the top of the figure and update only T and { k} i,j 
L L , (7) t t t {c  } L for h different equivalence classes that lude the i,j 

k=1 t { c  } { c  } current pattern in order to get T and L as follows. i,j i,j where t+1 t+1     { c  } { c  } { c  } { c  } After we set T = T and L = L for i,j i,j i,j i,j   t−1 
t+1 t t+1 t 

L  exp −μ { k} d {̂k}e (8) the unaffected equivalence classes, we start from the top . z t z of Figure 2. To continue with our example, suppose we z=1 have (xt−2, xt−1, xt) = (10.2, 13.5, −1), yielding (2, 3, 1). We also define a function of loss for each equivalence class in Figure 2 as follows Starting from the top of the figure and considering only the equivalence classes that contain the particular pattern at time 
t, i.e., for c2,3 at level-2, we have     

t−1   { c  }  ̂{ c  } { c  } (9) L = exp  −μ d e i,j I , i,j i,j 
z t z z 

T {c2,3 } = L{c2,3 } z=1 
t+1 t+1     { c  } where I is the indicator function, i.e., { c  }  ̂{ c  } i,j (13) 2,3 2,3 = L exp  −μd e , t t t t   , if (xt−h+1, . . . , xt) ∈ ci,j .

 1 and continuing to the top, for c1,2 at level-1, we have { c  } I   (10) i,j 

t , otherwise 0     { c  } { c  } { c  } { c  }  { c  }  ̂T 1,2 = L exp  −μd e + T T , 1,2 1,2 2,3 2,4 
t t+1 t t t+1 t+1 

L{k} L{·}’s Each can be written as a product of of its (14) t t equivalence class predictors, e.g., and for c0,1 at level-0, we have {1} {c1,1 } {c1,2 } {c1,3 }     (11) Lt = Lt Lt Lt . { c  } { c  } { c  } { c  }  { c  }  { c  }  ̂T 0,1 = L exp  −μd e +T T T . 0,1 0,1 1,1 1,2 1,3 
t t+1 t t t+1 t+1 t+1 (15) Based on this observation, we next use a recursive formula- tion in order to efficiently calculate the sum Lt. To recursively calcula t, starting from the top of Figure 2 and going downwards to the bottom, we recursively Hence, after h =  3 updates and recursive calculations, we { c  } get L = T . Based on this recursion we next produce 0,1 

t+1 t+1 (3). 
4 

 



assign a predictor d̂
{ci,j}
t to each equivalence class in Figure

2. Each equivalence class predictor constructs its output

based on the past sequence using a sequential learning

algorithm such as the or RLS algorithms.

Each FS predictor, d̂
{k}
t , uses a finite set of these equiva-

lence class predictors, e.g., d̂
{1}
t with {c1,1, c1,2, c1,3} uses

the equivalence class predictors d̂
{c1,1}
t , d̂

{c1,2}
t , d̂

{c1,3}
t .

If we observe at time t the pattern (xt−2, xt−1, xt) =

(10.2, 13.5,−1) with ordering (2, 3, 1), then d̂
{1}
t uses the

state predictor of d̂
{c1,2}
t to give its final output as d̂

{1}
t =

d̂
{c1,2}
t , s e (2, 3, 1) ∈ c1,2. In this sense, although there

are Kh different FS predictors, at any time t, each of these

FS predictors uses the output of only one of the mh different

equivalence class predictors, d̂
{ci,j}
t , based on the current

pattern.

To calculate (3) and (4), we first show i) how the total

sum in the denominator of (6) can be recursively calculated.

Based on this recursion, we then introduce ii) a sequential-

in-time update of this sum, which yields the numerator

of (6). This recursive formulation and the sequential-in-

time update of the denominator of (6) are then used to iii)
calculate the combined weights in a recursive form with a

computational cost only linear in the pattern length h. In the

following, we rigorously derive these steps.

i) The total loss in the denominator of (6) is defined as

Lt �
Kh∑
k=1

L
{k}
t , (7)

where

L
{k}
t � exp

(
−μ

t−1∑
z=1

d̂{k}z ez

)
. (8)

We also define a function of loss for each equivalence class

in Figure 2 as follows

L
{ci,j}
t = exp

(
−μ

t−1∑
z=1

d̂{ci,j}z ezI
{ci,j}
z

)
, (9)

where I
{ci,j}
t is the indicator function, i.e.,

I
{ci,j}
t �

{
1 , if (xt−h+1, . . . , xt) ∈ ci,j

0 , otherwise
. (10)

Each L
{k}
t can be written as a product of L

{·}
t ’s of its

equivalence class predictors, e.g.,

L
{1}
t = L

{c1,1}
t L

{c1,2}
t L

{c1,3}
t . (11)

Based on this observation, we next use a recursive formula-

tion in order to efficiently calculate the sum Lt.

To recursively calcula t, starting from the top of

Figure 2 and going downwards to the bottom, we recursively

define intermediate sums that represent the total accumulated

function of loss up to that point as follows

T
{ci,j}
t = L

{ci,j}
t +

∏
n∈C{ci,j}

T
{n}
t , (12)

for each equivalence class ci,j , where C{ci,j} represents the

upper branches of the equivalence class ci,j , e.g., for c0,1,

C{c0,1} = {c1,1, c1,2, c1,3}. To start the recursion (12) from

the top of Figure 2, at level i = h− 1, we set T
{ch−1,j}
t =

L
{ch−1,j}
t . If we open the recursive formulation for T

{c0,1}
t

using the relations (11) and (12), we get after some algebra

Lt = T
{c0,1}
t , i.e., the recursive calculation (12) from top to

bottom yields Lt at the bottom.

ii) Suppose after we observe (xt−h+1, . . . , xt), we pro-

duced our prediction d̂t, the true data dt is revealed and

we get et = dt − d̂t. Our task is now to calcula t+1

from Lt. Naturally, a recursive formulation for Lt+1 also

holds as in (12), where we have T
{ci,j}
t+1 and L

{ci,j}
t+1 terms

instead of T
{ci,j}
t and L

{ci,j}
t terms. However, suppose

(xt−h, . . . , xt) leads to a particular pattern. Then, from

time t to t + 1, due to the indicator function in (9), only

the equivalence classes who match the particular pattern of

(xt−h+1, . . . , xt) are effected by this update. For all other

equivalence classes that do not lude this particular pattern,

we have T
{ci,j}
t+1 = T

{ci,j}
t and L

{ci,j}
t+1 = L

{ci,j}
t . Hence, we

start from the top of the figure and update only T
{ci,j}
t and

L
{ci,j}
t for h different equivalence classes that lude the

current pattern in order to get T
{ci,j}
t+1 and L

{ci,j}
t+1 as follows.

After we set T
{ci,j}
t+1 = T

{ci,j}
t and L

{ci,j}
t+1 = L

{ci,j}
t for

the unaffected equivalence classes, we start from the top

of Figure 2. To continue with our example, suppose we

have (xt−2, xt−1, xt) = (10.2, 13.5,−1), yielding (2, 3, 1).
Starting from the top of the figure and considering only the

equivalence classes that contain the particular pattern at time

t, i.e., for c2,3 at level-2, we have

T
{c2,3}
t+1 = L

{c2,3}
t+1

= L
{c2,3}
t exp

(
−μd̂{c2,3}t et

)
, (13)

and continuing to the top, for c1,2 at level-1, we have

T
{c1,2}
t+1 = L

{c1,2}
t exp

(
−μd̂{c1,2}t et

)
+ T

{c2,3}
t+1 T

{c2,4}
t+1 ,

(14)

and for c0,1 at level-0, we have

T
{c0,1}
t+1 = L

{c0,1}
t exp

(
−μd̂{c0,1}t et

)
+T

{c1,1}
t+1 T

{c1,2}
t+1 T

{c1,3}
t+1 .

(15)

Hence, after h = 3 updates and recursive calculations, we

get Lt+1 = T
{c0,1}
t+1 . Based on this recursion we next produce

(3).
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IV. SIMULATIONS In this section, we illustrate the merits of the proposed algorithm with numerical examples. First, we consider the FS model in Figure 1, where h = 3, with transition probabilities 
Initialization: 

{c  } {c  } i,j , calculate T . i,j L = 1 0 0 
Prediction: For t = 1 , . . .  do Find the current state st. Find C, the set of equivalence classes having st. 

{ci,j }   ⎡
0.4 0 

⎤ Calculate T , ∀ci,j ∈ C. t+1 0 
0 

0.3 
0.3 
0 

0.3 

0.3 
0.3 
0 
0 

0.3 
0 

0.3 
0.3 
0 
0 

0.3 
0 

0 
0 

0.3 
0.3 
0 

0.3 

{c0,1 } {c0,1 }  ̂   Output d = T / Tt . ⎢ ⎥ t t+1 0.4 0 Find the error et = dt − d t̂. ⎢ ⎥ 0 
0 

0.4 {c  } {c  }  ˆ{c  } (22) Upda  , T , d i,j i,j i,j ∀c ∈C as in (13)-(15). P = , ⎢ ⎥ i,j t t t 0.4 
0 

End for ⎢  ⎣ ⎦ 0.4 
0 Figure 3: The Pseudo-code of the algorithm. 0.4 where Pij, denoting the i-th row and j-th column of the matrix P , represents the transition probability from state c2,i iii) To finally construct dˆt, we observe from (3) and (6) that to state c2,j, according to the state definitions in Figure 2, i.e., c2,1 = (1, 2, 3), c2,2 = (2, 1, 3), and so on. The transi- tion probabilities in (22) are chosen such that a non-trivial learning task would occur, where all states are consistently traversed. According to the transition probabilities in (22), we arbitrarily generated a sequence of length 2500, where the aim is to predict the trend of the sequence such that 

K   h {k} {k} 
d̂t = μt d̂ 

t 
k=1       t −1 {  ̂ k} K exp −μ d e   h z z z=1 

ˆ{k}     = d     t K t −1 ˆ{r} h exp −μ dz ez k=1 r=1 z=1 dt = 1 if xt+1 ≥ xt and dt = −1, otherwise, i.e., we try to         t−1  {k} d {̂k} predict whether the sequence reases or decreases at time 
t +1 compared to xt. In Figure 4, the accumulated square error performances (normalized with time) of the proposed algorithms are compared, where “Universal” represents the universal pre- dictor introduced in this paper, “Finest” represents the finest predictor for h = 3, i.e., the predictor using all 

K  ̂h exp −μ d e z z k=1 z=1 t (16) = . 
Lt We observe that the numerator of (16) is similar to     

  
K t     h 

d {̂k}ez
 Lt+1 = exp −μ z 

z=1 k=1       K t−1     S = {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)} h { k} d {̂k}ez
  ̂ (17) = exp −μ exp −μd e , as its states, “Coarsest” represents the coarsest predictor, t z t i.e., the predictor with only one state {·, ·, ·)}, and “Batch” k=1 z=1 where only the last exponential terms in (17) are re ced represents the optimal batch predictor that knows the tran- sition probabilities in (22) even before the processing starts. Note that while the predictors “Universal”, “Finest”, and “Coarsest” learns the individual state predictors and weights in an online manner, the “Batch” predictor already knows the optimal parameters, i.e., does not perform any learning. A pected from (5), the performance of the “Universal” predictor is as well as the “Coarsest” predictor when there is not sufficient amount of data to train finer equivalence classes. Furthermore, although as the data length reases, the performance of the “Coarsest” predictor deteriorates with respect to predictors having finer equivalence classes, the “Universal” predictor still performs as well as the “Finest” predictor even af  significant amount of observations. We emphasize that as the pattern order h reases or the underlying data is highly nonstationary, the convergence performance of the “Universal” predictor will significantly outperform the performance of the “Finest” predictor s e the “Finest” predictor may not be able to observe enough training sequences to achieve a satisfactory performance. This result is also apparent in Figure 4, where over short data sequences the performance of the “Finest” predictor 

by dˆ{k} terms. Hence, we can use the recursion from Lt to t 
Lt+1 to efficiently calculate the numerator of (16). To continue with our example, starting from the top of Figure 2, if we re ce the exponential term     { c  } { c  }  ̂ e in (13) with d , then we get  ̂exp −μd 2,3 2,3 

t t t {c2,3 } c2,3 }   (18) T = t , t+1 similarly from (14), we have {c1,2 } c1,2 } (c2,3 ) {c2,4 }     (19) T = t + T t+1  Tt+1 , t+1 and from (15), we get   (c0,1 ) (c0,1 ) (c1,1 ) {c1,2 } (c1,3 )   (20) T = t 
+ Tt+1 t+1  Tt+1 T , t+1 which yields the numerator of (16)     

K t−1     h   (c  ) d {̂k}ez
 d {̂k}, (21) 0,1 T = exp −μ t+1 z t 

z=1 k=1 after h recursive calculations. This concludes the derivation of the algorithm and the pseudocode of the algorithm can be found in Figure 3. 
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Initialization:
L

{ci,j}
0 = 1, calculate T

{ci,j}
0 .

Prediction:
For t = 1, . . . do

Find the current state st.
Find C, the set of equivalence classes having st.

Calculate ˜T
{ci,j}
t+1 , ∀ci,j ∈ C.

Output d̂t = ˜T
{c0,1}
t+1 / T

{c0,1}
t .

Find the error et = dt − d̂t.

Upda
{ci,j}
t , T

{ci,j}
t , d̂

{ci,j}
t ∀ci,j ∈ C as in (13)-(15).

End for

Figure 3: The Pseudo-code of the algorithm.

iii) To finally construct d̂t, we observe from (3) and (6)

that

d̂t =

Kh∑
k=1

μ
{k}
t d̂

{k}
t

=

Kh∑
k=1

exp
(
−μ∑t−1

z=1 d̂
{k}
z ez

)
∑Kh

r=1 exp
(
−μ∑t−1

z=1 d̂
{r}
z ez

) d̂{k}t

=

∑Kh

k=1 exp
(
−μ∑t−1

z=1 d̂
{k}
z ez

)
d̂
{k}
t

Lt
. (16)

We observe that the numerator of (16) is similar to

Lt+1 =

Kh∑
k=1

exp

(
−μ

t∑
z=1

d̂{k}z ez

)

=

Kh∑
k=1

exp

(
−μ

t−1∑
z=1

d̂{k}z ez

)
exp

(
−μd̂{k}t et

)
, (17)

where only the last exponential terms in (17) are re ced

by d̂
{k}
t terms. Hence, we can use the recursion from Lt to

Lt+1 to efficiently calculate the numerator of (16).

To continue with our example, starting from the

top of Figure 2, if we re ce the exponential term

exp
(
−μd̂{c2,3}t et

)
in (13) with d̂

{c2,3}
t , then we get

T̃
{c2,3}
t+1 = L

{c2,3}
t d̂

{c2,3}
t , (18)

similarly from (14), we have

T̃
{c1,2}
t+1 = L

{c1,2}
t d̂

{c1,2}
t + T̃

(c2,3)
t+1 T

{c2,4}
t+1 , (19)

and from (15), we get

T̃
(c0,1)
t+1 = L

(c0,1)
t d̂

(c0,1)
t + T

(c1,1)
t+1 T̃

{c1,2}
t+1 T

(c1,3)
t+1 , (20)

which yields the numerator of (16)

T̃
(c0,1)
t+1 =

Kh∑
k=1

exp

(
−μ

t−1∑
z=1

d̂{k}z ez

)
d̂
{k}
t , (21)

after h recursive calculations.

This concludes the derivation of the algorithm and the

pseudocode of the algorithm can be found in Figure 3.

IV. SIMULATIONS

In this section, we illustrate the merits of the proposed

algorithm with numerical examples.

First, we consider the FS model in Figure 1, where h = 3,

with transition probabilities

P =

⎡⎢⎢⎢⎢⎢⎢⎣
0.4 0 0.3 0.3 0 0
0.4 0 0.3 0.3 0 0
0 0.3 0 0 0.3 0.4
0 0.3 0 0 0.3 0.4
0.4 0 0.3 0.3 0 0
0 0.3 0 0 0.3 0.4

⎤⎥⎥⎥⎥⎥⎥⎦ , (22)

where Pij , denoting the i-th row and j-th column of the

matrix P , represents the transition probability from state c2,i
to state c2,j , according to the state definitions in Figure 2,

i.e., c2,1 = (1, 2, 3), c2,2 = (2, 1, 3), and so on. The transi-

tion probabilities in (22) are chosen such that a non-trivial

learning task would occur, where all states are consistently

traversed. According to the transition probabilities in (22),

we arbitrarily generated a sequence of length 2500, where

the aim is to predict the trend of the sequence such that

dt = 1 if xt+1 ≥ xt and dt = 1, otherwise, i.e., we try to

predict whether the sequence reases or decreases at time

t+ 1 compared to xt.

In Figure 4, the accumulated square error performances

(normalized with time) of the proposed algorithms are

compared, where “Universal” represents the universal pre-

dictor introduced in this paper, “Finest” represents the

finest predictor for h = 3, i.e., the predictor using all

S = {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}
as its states, “Coarsest” represents the coarsest predictor,

i.e., the predictor with only one state {·, ·, ·)}, and “Batch”

represents the optimal batch predictor that knows the tran-

sition probabilities in (22) even before the processing starts.

Note that while the predictors “Universal”, “Finest”, and

“Coarsest” learns the individual state predictors and weights

in an online manner, the “Batch” predictor already knows

the optimal parameters, i.e., does not perform any learning.

A pected from (5), the performance of the “Universal”

predictor is as well as the “Coarsest” predictor when there

is not sufficient amount of data to train finer equivalence

classes. Furthermore, although as the data length reases,

the performance of the “Coarsest” predictor deteriorates with

respect to predictors having finer equivalence classes, the

“Universal” predictor still performs as well as the “Finest”

predictor even af significant amount of observations.

We emphasize that as the pattern order h reases or

the underlying data is highly nonstationary, the convergence

performance of the “Universal” predictor will significantly

outperform the performance of the “Finest” predictor s e

the “Finest” predictor may not be able to observe enough

training sequences to achieve a satisfactory performance.

This result is also apparent in Figure 4, where over short

data sequences the performance of the “Finest” predictor
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Normalized Accumulated Error Performance of the Proposed Algorithms Deterministic Error Performance of the Proposed Algorithms 
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1.1 

1.05 

1 

0.95 
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500 1000 1500 2000 2500 1 2 3 4 5 

x 104 Data Length (n) Data Length (n) Figure 4: Normalized accumulated squared error perfor- mance of the proposed algorithms for the FS model in (22) averaged over 25 trials. Figure 5: Normalized accumulated squared error perfor- mance of the proposed algorithms for the Mackey-Glass time series generated by the  order Runge-Kutta method using (23). is worse compared to the “Universal” and the “Coarsest” predictor. Hence, the universal algorithm outperforms the constituent FS predictors by exploiting the time-dependent nature of the best choice among constituent FS predictors that are defined on the hierarchical structure. We next consider the performance of our algorithm for Mackey-Glass time series. The Mackey-Glass time series are generated according to the following time delay differential equation 

equivalence classes are defined as the partitions of the space of the sequence history. Figure 5 illustrates that the OHP and CTW algorithms achieve a better convergence performance compared to the VF and FNR algorithms. This shows the modeling accuracy of the proposed methods. On the other hand, the OHP algorithm converges significantly faster with respect to the CTW algorithm. This follows from the orporation of the EG algorithm into our framework, whereas the CTW algorithm uses universal weights, which are derived ac- cording to information theoretic setups instead of directly minimizing the accumulated squared error. As can be seen from Figure 5, even for a remarkably long sequence of data, the performance of the OHP algorithm is superior to the performance of the CTW algorithm. We then consider the performance of our algorithm for the data generated by the Lorenz attractor [26]. This data is generated by the following three ordinary differential equations 

dx xτ (23) = β — γx, n 
τ dt 1+ x where x represents the value of the variable x at time t − τ τ and we set γ =  1, β =  2, τ =  2, and n =  9.65 starting from an initial condition of x = 0.5 for t < 0 in order to generate the well-known chaotic response of the Mackey- Glass sequence. To generate the time series, we use the  order Runge-Kutta method. The generated time series are then normalized between [−1, 1] for a fair comparison between the proposed algorithms. In Figure 5, we compare the performances of the online hierarchical predictor (OHP) proposed in this paper, the con- text tree weighting (CTW) algorithm presented in [17], the Volterra filter (VF) [24], and the Fourier nonliner regressor (FNR) presented in [25]. Note that the computational com- plexities of the VF and FNR algorithms are quadratic in the order of the filters, whereas the computational complexities of the OHP and CTW algorithms are linear in the depth of the hierarchy. Therefore, for a fair performance comparison among these algorithms, we use the second order VF and FNR algorithms and the hierarchy depth is set to 4 for the OHP and CTW algorithms. We use RLS algorithm to train the VF and FNR algorithms as well as the equivalence class predictors of the OHP and CTW algorithms, where 

dx 
dt 
dy 
dt 
dz 
dt 

(24) = σ(y − x) 

= x(ρ − z) − y 

= xy − βz, 

(25) (26) where we set ρ = 28, σ = 10, and β = 8/3 to generate the chaotic behavior. In thi periment, xt is selected as the desired data and the two dimensional region represented by 
(yt, zt) is selected as the regressor space. We use the same experiment setup as in the previou periment and compare the performance of our algorithm with respect to the same algorithms. 
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Figure 4: Normalized accumulated squared error perfor-

mance of the proposed algorithms for the FS model in (22)

averaged over 25 trials.

is worse compared to the “Universal” and the “Coarsest”

predictor. Hence, the universal algorithm outperforms the

constituent FS predictors by exploiting the time-dependent

nature of the best choice among constituent FS predictors

that are defined on the hierarchical structure.

We next consider the performance of our algorithm for

Mackey-Glass time series. The Mackey-Glass time series are

generated according to the following time delay differential

equation
dx

dt
= β

xτ

1 + xn
τ

− γx, (23)

where xτ represents the value of the variable x at time t−τ
and we set γ = 1, β = 2, τ = 2, and n = 9.65 starting

from an initial condition of x = 0.5 for t < 0 in order to

generate the well-known chaotic response of the Mackey-

Glass sequence. To generate the time series, we use the

order Runge-Kutta method. The generated time series

are then normalized between [−1, 1] for a fair comparison

between the proposed algorithms.

In Figure 5, we compare the performances of the online

hierarchical predictor (OHP) proposed in this paper, the con-

text tree weighting (CTW) algorithm presented in [17], the

Volterra filter (VF) [24], and the Fourier nonliner regressor

(FNR) presented in [25]. Note that the computational com-

plexities of the VF and FNR algorithms are quadratic in the

order of the filters, whereas the computational complexities

of the OHP and CTW algorithms are linear in the depth of

the hierarchy. Therefore, for a fair performance comparison

among these algorithms, we use the second order VF and

FNR algorithms and the hierarchy depth is set to 4 for

the OHP and CTW algorithms. We use RLS algorithm to

train the VF and FNR algorithms as well as the equivalence

class predictors of the OHP and CTW algorithms, where

0 1 2 3 4 5

x 10
4

0.018

0.019

0.02

0.021

0.022

0.023

0.024

0.025

0.026

0.027

Data Length (n)

C
um

ul
at

iv
e 

D
et

er
m

in
is

tic
 E

rr
or

Deterministic Error Performance of the Proposed Algorithms

 

 
OHP
CTW
VF
FNR

Figure 5: Normalized accumulated squared error perfor-

mance of the proposed algorithms for the Mackey-Glass time

series generated by the order Runge-Kutta method

using (23).

equivalence classes are defined as the partitions of the space

of the sequence history.

Figure 5 illustrates that the OHP and CTW algorithms

achieve a better convergence performance compared to the

VF and FNR algorithms. This shows the modeling accuracy

of the proposed methods. On the other hand, the OHP

algorithm converges significantly faster with respect to the

CTW algorithm. This follows from the orporation of

the EG algorithm into our framework, whereas the CTW

algorithm uses universal weights, which are derived ac-

cording to information theoretic setups instead of directly

minimizing the accumulated squared error. As can be seen

from Figure 5, even for a remarkably long sequence of data,

the performance of the OHP algorithm is superior to the

performance of the CTW algorithm.

We then consider the performance of our algorithm for

the data generated by the Lorenz attractor [26]. This data

is generated by the following three ordinary differential

equations

dx

dt
= σ(y − x) (24)

dy

dt
= x(ρ− z)− y (25)

dz

dt
= xy − βz, (26)

where we set ρ = 28, σ = 10, and β = 8/3 to generate the

chaotic behavior. In thi periment, xt is selected as the

desired data and the two dimensional region represented by

(yt, zt) is selected as the regressor space. We use the same

experiment setup as in the previou periment and compare

the performance of our algorithm with respect to the same

algorithms.

66



 

 

Deterministic Error Performance of the Proposed Algorithms Deterministic Error Performance of the Proposed Algorithms 
0.038 

0.037 

0.036 

0.035 

0.034 

0.033 

0.032 

0.031 

0.03 

0.029 

10 0.7 

OHP 
CTW 
VF 
FNR 

10 0.8 

10 0.9 

0.028
0
 

1 2 3 4 5 
x 104 

0 1000  2000  3000  4000  5000  6000  7000  8000 
Data Length (n) Data Length (n) Figure 6: Normalized accumulated squared error perfor- Figure 7: Normalized accumulated squared error perfor- mance of the proposed algorithms for the pumadyn data set, averaged over 100 trials. mance of the proposed algorithms for the time series gen- erated by the Lorenz attractor given in (24)-(26), averaged over 20 trials. number of states for even modera ength patterns, we define hierarchical equivalence classes by recursively tying certain patterns to avoid over training problems. With this hierarchical equivalence class definitions, we construct a huge number of FS predictors, one of which is optimal for the underlying task at hand in an individual sequence manner (and the optimal predictor can change in time). By using the EG algorithm, we show that we can sequentially achieve the performance of the best sequential FS predictor that can be defined on this hierarchical structure, i.e., the best 

h sequential FS predictor out of 2(h/e) possible FS predictors, with computational complexity only linear in the length of the pattern h. Our results are generic such that they can be directly used for a wide range of hierarchical equivalence class definitions (e.g., instead of the location of the largest element in the context, one can use other methods to tie relative ordering patterns) or hold for a wide range of loss functions [22]. REFERENCES 

In Figure 6, we provide the normalized accumulated errors of the proposed algorithms for the Lorenz attractor generated by (24)-(26) averaged over 20 trials (each corresponding to a random initialization). Figure 6 illustrates that the proposed algorithm significantly outperforms the competitor algorithms as it attains a smaller average accumulated error. This follows from the adaptation capability of our algorithm to dynamic changes in the underlying model. As the last experiment, we consider the prediction of a ben ark data set, namely the pumadyn data set. Among its variants, we have used the hat is highly nonlinear and moderate noisy. The task in this data set is to predict the angular acceleration of one of the robot arm’s links using inputs such as the angular positions, velocities and torques of the robot arm. We note that each of these parameters are nor- malized between [−1, 1] for a fair performance comparison between the competitor algorithms. In Fig. 7, we present the normalized accumulated errors of the proposed algorithms for this data set averaged over 100 t trials, where in each trial we randomly permuted the data sequence. As can be seen from the figure, the proposed OHP algorithm captures the salient characteristics of the underlying data better than its well-known alternatives in the li ture. This experiment illustrates that the proposed algorithm can be efficiently used in real life applications. 
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V. CONCLUSION In this paper, we study sequential FS predictors for real valued sequences, where we use the relative order- ing patterns of the sequence history to construct states. Instead of directly using the relative ordering patterns of the sequence history, which can result a prohibitively large 
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Figure 6: Normalized accumulated squared error perfor-

mance of the proposed algorithms for the time series gen-

erated by the Lorenz attractor given in (24)-(26), averaged

over 20 trials.

In Figure 6, we provide the normalized accumulated errors

of the proposed algorithms for the Lorenz attractor generated

by (24)-(26) averaged over 20 trials (each corresponding

to a random initialization). Figure 6 illustrates that the

proposed algorithm significantly outperforms the competitor

algorithms as it attains a smaller average accumulated error.

This follows from the adaptation capability of our algorithm

to dynamic changes in the underlying model.

As the last experiment, we consider the prediction of a

ben ark data set, namely the pumadyn data set. Among

its variants, we have used the hat is highly nonlinear

and moderate noisy. The task in this data set is to predict the

angular acceleration of one of the robot arm’s links using

inputs such as the angular positions, velocities and torques of

the robot arm. We note that each of these parameters are nor-

malized between [−1, 1] for a fair performance comparison

between the competitor algorithms. In Fig. 7, we present the

normalized accumulated errors of the proposed algorithms

for this data set averaged over 100 t trials, where

in each trial we randomly permuted the data sequence. As

can be seen from the figure, the proposed OHP algorithm

captures the salient characteristics of the underlying data

better than its well-known alternatives in the li ture. This

experiment illustrates that the proposed algorithm can be

efficiently used in real life applications.

V. CONCLUSION

In this paper, we study sequential FS predictors for

real valued sequences, where we use the relative order-

ing patterns of the sequence history to construct states.

Instead of directly using the relative ordering patterns of

the sequence history, which can result a prohibitively large
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Figure 7: Normalized accumulated squared error perfor-

mance of the proposed algorithms for the pumadyn data set,

averaged over 100 trials.

number of states for even modera ength patterns, we

define hierarchical equivalence classes by recursively tying

certain patterns to avoid over training problems. With this

hierarchical equivalence class definitions, we construct a

huge number of FS predictors, one of which is optimal

for the underlying task at hand in an individual sequence

manner (and the optimal predictor can change in time). By

using the EG algorithm, we show that we can sequentially

achieve the performance of the best sequential FS predictor

that can be defined on this hierarchical structure, i.e., the best

sequential FS predictor out of 2(h/e)
h

possible FS predictors,

with computational complexity only linear in the length of

the pattern h. Our results are generic such that they can be

directly used for a wide range of hierarchical equivalence

class definitions (e.g., instead of the location of the largest

element in the context, one can use other methods to tie

relative ordering patterns) or hold for a wide range of loss

functions [22].
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