Copyright © 2002 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed
at /patents and one or more additional patents or pending patent applications in the U.S. and in other
countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written
authorization of Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Sun, Sun Microsystems, the Sun logo, Forte, Java, J2ME, Java Developer Connection, Java Powered logo, Javadoc, and J2SE are
trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

UNIX s a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Lid.
The Adobe® logo is a registered trademark of Adobe Systems, Incorporated.

Federal Acquisitions: Commercial Software - Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

Copyright © 2002 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Ine. a les droits de propriété intellectuels relatants a la technologie incorporée dans le produit qui est décrit dans
ce document. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets
américains énumérés a /patents etunou les brevets plus supplémentaires ou les applications de brevet
en attente dans les Etats - Unis et dans les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent I'utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou documeni ne peut étre reproduite sous aucune forme, par quelque
moyen que ce soit, sans 1’autorisation préalable et écrite de Sun e de ses bailleurs de licence, sil y ena.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractéres, est protégé par un copyright et
licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, Forte, Java, J2ME, Java Developer Connection, Java Powered logo, Javadoc, et J2SE sont des
marques de fabrique ou des marques déposées de Sun Microsystems, Ine. aux Etats-Unis et dans d’autres pays.

UNIXis a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Lid.
Le logo Adobe® est une marque déposée de Adobe Systems, Incorporated.

LA DOCUMENTATION EST FOURNIE “EN L’ETAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES
EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y
COMPRIS NOTAMMENT TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE
UTILISATION PARTICULIERE OU A L’ABSENCE DE CONTREFACON.

@’9 Dlease 1)

Adobe PostScript

Contents

Preface ix

Introduction 1

Architecture 1

MIDlet Environment 2

MIDlet Life Cycle 5

Getting and Running MIDlets 6

Permissions 7

Creating a MIDlet 9

Getting Started 10

Constructing Objects 10

Handling User Input 12

Creating the Life Cycle Methods 13
APIs and Security 15

Compiling and Preverifying a MIDlet 17

Compiling MIDlet Source Files 18

Preverifying Compiled Files 19
Preverifying Class Files 19

Preverifying and Examining Class Files

20

4. Packaginga MIDlet 21
Creating a JAR File 22
Creating a JAD File 25
Signing a JAR File 26

5. Publishing a MIDlet 29

6. Debugging 31
Debugging a MIDlet 31
Reporting Problems 32

A. Code for the Hello MIDlet 35

iv Creating MIDlet Suites « November, 2002

Figures

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7
FIGURE 8

J2ME Platform Architecture for MIDP and MIDP Applications
Screens of the PushPuzzle Game 3

Screen and Associated System Menu of Commands
Life Cycle of aMIDlet 5

Getting a MIDlet: Packaging to Installing 6

Hello World MIDlet 9

Building a MIDlet 17

Whitespace in an HTML File Shown on a Device 30

2

4

vi Creating MIDlet Suites « November, 2002

Code Samples

CODE EXAMPLE 1
CODE EXAMPLE 2
CODE EXAMPLE 3
CODE EXAMPLE 4
CODE EXAMPLE 5
CODE EXAMPLE 6

Imports and Initial Class Definition for HelloMIDlet

Constructor for HelloMIDlet 12

Fields of HelloMIDlet 12

The commandAction Method of HelloMIDlet
Life Cycle Methods of HelloMIDlet 14

Full Hello MIDlet Source Code 35

13

10

Vii

viii Creating MIDlet Suites < November, 2002

Preface

Creating MIDlet Suites describes how to create MIDlets and package them into
MIDlet suites using the MIDP Reference Implementation. It is not a programming
guide, so although it covers the required steps in MIDlet creation and discusses
some interfaces, classes, and methods, it does not comprehensively cover the MIDP
Reference Implementation APIs.

This guide assumes that you have already installed the product, as described in the
Installing MIDP, and that you are familiar with both the Java™ programming
language and the MIDP 2.0 Specification.

The Hello MIDlet is used as an example throughout this guide. The code for the
Hello MIDlet is in the midplnstallDir\ src\example directory, where midplnstallDir
is the directory that holds your installation of the MIDP Reference Implementation.
It is reproduced in Appendix A, “Code for the Hello MIDlet.”

How This Book Is Organized

This book has the following chapters:

Chapter 1 introduces MIDlets and the environments in which they run.
Chapter 2 describes the basics of creating a MIDlet.

Chapter 3 provides the steps to compile and preverify your MIDlet.
Chapter 4 shows you how to package your MIDlet.

Chapter 5 describes how to publish your MIDlet.

Chapter 6 describes how to run your MIDlet suite in a debugger and how to report
problems.

Appendix A reproduces the example code for the Hello MIDlet.

Using Operating System Commands

This document may not contain information on basic UNIX® or Microsoft Windows
commands and procedures such as opening a terminal window, changing
directories, and setting environment variables. See the software documentation that
you received with your system for this information.

Typographic Conventions

Typeface

Meaning

Examples

AaBbCcl123

AaBbCcl23

AaBbCc123

The names of commands, files,
and directories; on-screen
computer output

What you type, when
contrasted with on-screen
computer output

Book titles, new words or terms,
words to be emphasized

Command-line variable; replace
with a real name or value

Edit your . login file.
Use 1s -a tolist all files.

Q

% You have mail.
o

s su
Password:

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.

To delete a file, type rm filename.

Shell Prompts

Shell Prompt
C shell %
Microsoft Windows directory>

x Creating MIDlet Suites « November, 2002

Related Documentation

The following documentation is included with this release:

Application Title

All Release Notes
Installing Installing MIDP
Running and managing security for emulator Using MIDP

Porting the MIDP Reference Implementation Porting MIDP
Creating and building MIDlets Creating MIDIet Suites
Viewing reference documentation created by the Javadoc™ tool API Reference
Looking at examples Example Overview

Accessing Sun Documentation Online

The Java Developer Connection®™ web site enables you to access Java platform
technical documentation on the Web:

http://dev /developer/infodocs/

Sun Welcomes Your Comments

We are interested in improving our documentation and welcome your comments
and suggestions. You can email your comments to us at:

Preface

Xi

xii ~ Creating MIDlet Suites * November, 2002

CHAPTER 1

Introduction

An application that runs in a MIDP environment is called a MIDIet. This chapter
introduces MIDP Reference Implementation and MIDlets. It has the sections:

Architecture

MIDlet Environment

MID]et Life Cycle

Getting and Running MIDlets
Permissions

Architecture

MIDP (Mobile Information Device Profile) is part of the Java™ 2 Platform, Micro
Edition (J2ME™). MIDP defines the Java application environment for mobile
information devices (MIDs), such as mobile phones and personal digital assistants
(PDAs). It is built on top of the Connected Limited Device Configuration (CLDC)
and conforms to the specification from the Mobile Information Device Profile 2.0
[JSR-000118]. See http://jcp.ocrg/jsr/detail/118. Jsp for the MIDP 2.0
Specification.

A application that is written in the Java programming language and runs in the
MIDP environment is a MIDlet. Users do not download and launch MIDlets
though. They download and launch MIDlet suites, one or more MIDlets packaged
together for distribution, then run a MIDlet from the suite.

MIDlet suites are typically made up of MIDlets that perform a similar function
(such as a group of MIDlets in a game-pack) or that work together (such as a
MID]et that provides restaurant reviews and one that makes restaurant
reservations). MIDlets in the same suite can share resources, such as graphics and
data. If a MIDlet stores information on a device, other MIDlets in its suite can
access the information, and other MIDlets can be given permission to see it.

The following figure shows the J2ME platform architecture from the MIDP
perspective:

MIDlet Suite MIDlet Suite

MIDlet MIDlet MIDlet MIDlet

MIDP Profile

CLDC

Libraries

Virtual Machine

Device Operating System

FIGURE1 J2ME Platform Architecture for MIDP and MIDP Applications

2

MIDlet Environment

This section covers the MIDP environment from the perspective of the MIDlet
developer. From this perspective, the MIDlet environment is screen based. That is,
after determining the tasks that users will perform with a MIDlet, a developer

organizes the tasks into screens. Users navigate through the screens when they run
the MIDlet.

For example, a game such as PushPuzzle might enable a user to make a move in
the game, undo last move, restart the level, restart the entire game, set the level of
play, view high scores, and get information about the game. These tasks could be
be organized into:

m A screen for playing the game (making and undoing moves, restarting)
m A screen for setting the level of play

m A screen for seeing high scores

m A screen for seeing an “About box” for the application.

Creating MIDlet Suites + November, 2002

Here are the screens of the PushPuzzle application:

Fanll () Fanil)
Scores
r Current:
0 pushes
0 maves
Best:
0 pushes
0 maves
Unda Menu Ol
F F
Faull 123) Famnil ()
Enter Level About MIDP
e
JAVA
FOWERED ™
Copyright (2] 2000-2002 Sun
hicrosystems, Inc. Al rights
Feserved.
Lz iz zubject ta license terms.
Ok - Dane
F F

FIGURE 2 Screens of the PushPuzzle Game

MIDP has both structured and unstructured screens. Structured screens are more
portable, but (with one exception, the CustomItem class) do not give the
application access to low-level input mechanisms or control of the screen.
Unstructured screens provides access to low-level I/O, but can be less portable.
The screens in FIGURE 2 show both types of screens: the game-plzying screen is an
unstructured screen; the rest are structured screens.

The unstructured screen is called a canvas. It gives you control of the screen,
enabling you to draw images and simple graphics (such as rectangles and lines). It
also gives you access to low-level input mechanisms, such as key presses or touch
input if it is supported by the device. Again, a canvas is useful when you need
control of the screen (such as for an action game) but is more difficult to make
portable than a structured screen.

There are a few types of structured screens. Each type serves a particular purpose,
such as gathering text input, alerting users to important events, or giving users lists
of choices. When you use a structured screen you prowide cnly the content, such as
the elements in a list. The MIDP implementation handles the look of structured
screens (such as layout, fonts, and colors), as well as their low-level interactions

Chapter 1 Introduction 3

4

with the user (such as scrolling). The MIDP implementation also notifies your
application when the user takes an action, such as choosing OK on the screen in
FIGURE 2 titled Enter Level. Because MIDP implementations handle the user
interfaces and IO, a MIDlet that uses structured screens can run on many devices
and, without code updates, look and behave like a native application.

An action associated with a screen, such as OK on the screen titled Enter Level in
FIGURE 2, is called an command. A screen can have any number of
commands; each screen should have at least one. commands enable you to
define actions without specifying their user interface. MIDP implementations
determire their presentation. This makes commands portable, like
structured screens. MIDlets that use them can look and behave appropriately on
different devices without code changes.

When presenting commands, MIDP implementations conform to the
conventions of the device (within the constraints of the MIDP 2.0 Specification).
Some implementations might use buttons, others rmetiss, and so on. The MIDP
Reference Implementation uses various buttons and, if there are more
commands after daing the standard mappings, creates a et for them (a system
menu). The following figure shows a screen that required a system inery, and the
system menu that appears when the user chooses the Mernu command.

F il () F anil ()

r

Mext Lewvel
Previous Lewvel
Change Level
Swyitch Theme
Showy Scares
About

Exit

= O o R o=

Undo Menu! Back e

FIGURE3 Screen and Associated System hder of Commands

In summary, the MIDP environment is screen-based. When you design and
implement a MIDlet, you need to organize its tasks into a set of screens. The
screens can be either structured screens (which are more portable) or unstructured
screens (if you need low-level I/O control). Each screen should have one or more
associated actions, called commands, that enable a user to carry out their
tasks when they run the MIDlet.

Creating MIDlet Suites + November, 2002

e ——e

PLEAB AR SRR TS, AW RSB —FEHNE.
BERRERAE4E, BiA: https://d. book118. com/48713200414
4006041

https://d.book118.com/487132004144006041
https://d.book118.com/487132004144006041

