
Why do we need to know the instruction set

▪ ARM and Thumb instruction sets were designed to give the best output

from compilers

▪ Especially the Thumb Instruction set

▪ Most design effort for many systems is focussed on compiled code and

knowledge of the instruction set is not required

▪ But…..

▪ Embedded systems require initialisation code and interrupt routines

▪ All systems require debugging – possibly at the instruction level

▪ Performance gains can be made by writing assembler routines

▪ Some features of the ARM architecture are not available with compilers

Agenda

▪ Architecture v4T

Architecture v5TE

Architecture v6

Thumb

Unified Assembler Language

▪ ARM instructions can be made to execute conditionally by post-fixing them

with the appropriate condition code

▪ This can rease code density and rease performance by reducing the number

of forward branches

CMP

ADDGT

ADDLE

r0, r1

r2, r2, #1

r3, r3, #1

▪ By default, data processing instructions do not affect the condition flags but

this can be achieved by post fixing the instruction (and any condition code)

with an “S”

loop

ADD r2, r2, r3

SUBS r1, r1, #0x01

BNE loop

r2=r2+r3

if Z flag clear then branch

decrement r1 and set flags

r0 - r1, compare r0 with r1 and set flags

if > r2=r2+1 flags remain unchanged

if <= r3=r3+1 flags remain unchanged

Conditional Execution and Flags

Conditional execution examples

C source code

▪ 5 instructions ▪ 3 instructions

▪ 5 words ▪ 3 words

▪ 5 or 6 cycles ▪ 3 cycles

ARM instructions

unconditional

if (r0

{

== 0) CMP

BNE

r0, #0

else

CMP r0, #0

ADDEQ r1, r1, #1

r1 = r1 + 1; ADD r1, r1, #1 ADDNE r2, r2, #1

}

else

{

r2

}
= r2 + 1;

B end

else

ADD r2,

end

...

r2, #1

...

conditional

Condition Codes

Suffix Description Flags tested

EQ Equal Z=1

NE Not equal Z=0

CS/HS Unsigned higher or same C=1

CC/LO Unsigned lower C=0

MI Minus N=1

PL Positive or Zero N=0

VS Overflow V=1

VC No overflow V=0

HI Unsigned higher C=1 & Z=0

LS Unsigned lower or same C=0 or Z=1

GE Greater or equal N=V

LT Less than N!=V

GT Greater than Z=0 & N=V

LE Less than or equal Z=1 or N=!V

AL Always

▪ The possible condition codes are listed below

▪ Note AL is the default and does not need to be specified

Data processing Instructions

▪ Consist of :

▪ Arithmetic: ADD ADC SUB SBC RSB RSC

▪ Logical: AND ORR EOR BIC

▪ Comparisons: CMP CMN TST TEQ

▪ Data movement: MOV MVN

▪

▪

These instructions only work on registers, NOT memory.

Syntax:

<Operation>{<cond>}{S} Rd, Rn, Operand2

▪ Operand 2 can be a register or an immediate value

▪ SUB

▪ AND

r0, r1, r2

r1, r4, #0xFF

▪

▪ Comparisons set flags only - they do not specify Rd

▪ CMP r0, r3

▪ Data movement does not specify Rn

▪ MOV r0, r1

Operand 2 is sent to the ALU via barrel shifter

Register, optionally with shift operation applied

▪ Shift value can be either be:

▪ 5 bit unsigned integer

▪ Specified in bottom byte of another register

▪ Used for multiplication by constant

▪ ADD r0, r5, r5 LSL 1 r0 = r5 x 3

Immediate value

▪ 8 bit number, with a range of 0-255.

▪ Rotated right through even number of positions

▪ Allows reased range of 32-bit constants to

be loaded directly into registers

Result

Operand
1

Barrel
Shifter

Operand
2

ALU

The Second Operand

Shift Operations

DestinationCF 0

Destination CF
Multiplication by a power of 2

Division by a power of 2, preserving the sign bit

Destination CF...0 Destination CF

LSR: Logical Shift Right ROR: Rotate Right

Division by a power of 2 Bit rotate with wrap around from LSB to MSB

Destination

RRX: Rotate Right Extended

Single bit rotate with wrap around
from CF to MSB

CF

▪ These shift operations are used as part of data processing instructions.

▪ bits can be shifted from 0-31 ces, typically without performance penalty

LSL: Logical Left Shift ASR: Arithmetic Right Shift

▪ No ARM instruction can contain a 32 bit immediate constant

▪ All ARM instructions are fixed as 32 bits long

▪ The data processing instruction format has 12 bits available for operand2

▪

▪

4 bit rotate value (0-15) is multiplied by two to give range 0-30 in steps of 2

Rule to remember is

“8-bits rotated right by an even number of bit positions”

011 8 7

immed_8

Shifter

ROR

rot

x2

Quick Quiz:
0xe3a004ff

MOV r0, #???

Immediate constants

▪

▪

▪

▪

▪

▪

To allow larger constants to be loaded, the assembler offers a pseudo-

instruction:

LDR rd, =const

This will either:

Produce a MOV or MVN instruction to generate the value (if possible)

or

Generate a LDR instruction with a PC-relative address to read the

constant from a li l pool (Constant data area embedded in the code)

For example▪

▪

▪

LDR r0, =0xFF =>

LDR r0, =0x =>

MOV r0, #0xFF

LDR r0, [PC, #Imm12]

…

…

DCD 0x

▪ This is the mended way of loading constants into a register

Loading 32 bit constants

▪

▪

There are 2 classes of multiply - producing 32-bit and 64-bit results

32-bit versions on an ARM7TDMI will execute in 2 - 5 cycles

▪ MUL r0, r1, r2

▪ MLA r0, r1, r2, r3

; r0 = r1 * r2

; r0 = (r1 * r2) + r3

▪ 64 bit multiply instructions offer both signed and unsigned versions

▪ For these instruction there are 2 destination registers

▪ [U|S]MULL r4, r5, r2, r3

▪ [U|S]MLAL r4, r5, r2, r3

; r5:r4 = r2 * r3

; r5:r4 = (r2 * r3) + r5:r4

▪ Most ARM cores do not offer integer divide instructions

▪ Division operations will be performed by C library routines or inline shifts

Multiply and Divide

Branch Instructions

▪ Branch instructions have the following format:

▪ B{L}{<cond>} label

▪ subroutine calls can be made by specifying the optional {L}

▪ a 24 bit address offset field is part of the instruction encoding

▪ On execution this is left shifted 2 ces (s e ARM instructions are always word

aligned) to give a 26 bit value, thus giving a relative branch range of ± 32 MB

▪ Causes a pipeline flush

B start

.

.

start

perform PC relative branch to label “start”

continue execution from here

:

BL func2

:
:

BX lr

func1 func2
void func1 (void)

{

:

func2();

:

}

Subroutines

▪

▪

▪ Implementing a conventional subroutine call requires two steps:

▪ Store the return address

▪ Branch to the address of the required subroutine

These steps are carried out in one instruction, BL

▪ The return address is stored in the link register (lr/r14)

▪ Branch to an address anywhere within a +/- 32MB range

Returning is performed by restoring the program counter (pc) from lr

Quiz

1. Write an ARM instruction which will implement each of the following:

(signed numbers)

a) r0 = 16

b) r0 = r1 / 16

c) r1 = r2 * 3

d) r0 = -r0

2. What does the BIC instruction do?

3. Which data processing instructions always set the condition flags?

Example Source File

AREA ARMEX, CODE, READONLY

ENTRY

ARM

main

MOV r0, #10

MOV r1, #3

ADD r2, r0, r1 ; this is a comment

stop

stopB

END

Defines start of a read-only area, called “ARMEX”, containing code

Marks end of source file

Marks software entry point

Start of a sequence of ARM instructions

Label starts in the first column

Workbook Session 1

▪ Basic assembler file and general data processing operations

▪ Loading constants into registers

▪ Conditional execution

Single register data transfer

LDR STR Word

LDRB STRB Byte

LDRH STRH Halfword

LDRSB Signed by oad

LDRSH Signed halfword load

▪ Memory system must support all access sizes

▪ Syntax:

▪ LDR{<cond>}{<size>} Rd, <address>

▪ STR{<cond>}{<size>} Rd, <address>

e.g. LDREQB

Address accessed

▪

▪

Address accessed by LDR/STR is specified by a base register with an offset

For word and unsigned byte accesses, offset can be:

▪ An unsigned 12-bit immediate value (i.e. 0 - 4095 bytes)
LDR r0, [r1, #8]

▪ A register, optionally shifted by an immediate value
LDR r0, [r1, r2]

LDR r0, [r1, r2, LSL#2]

▪

▪

This can be either added or subtracted from the base register:
LDR r0, [r1, #-8]

LDR r0, [r1, -r2, LSL#2]

For halfword and signed halfword / byte, offset can be:

▪

▪

An unsigned 8 bit immediate value (i.e. 0 - 255 bytes)

A register (unshifted)

▪

▪

Choice of pre-indexed or post-indexed addressing

Choice of whether to update the base pointer (pre-indexed only)

LDR r0, [r1, #-8]!

0x5

0x5

r1

0x200
Base

Register 0x200

r0

0x5
Source

Register
for STR

Offset

12 0x20c

r1

0x200

Original
Base

Register
0x200

r0

0x5
Source

Register
for STR

Offset

12 0x20c

r1

0x20c

Updated
Base

Register

Pre or Post Indexed Addressing?

▪ Pre-indexed: STR r0, [r1, #12]

Auto-update form: STR r0,[r1,#12]!

▪ Post-indexed: STR r0, [r1], #12

Generating Branches with LDR

▪ The ARM’s branch instruction is limited to a range of ±32MB

▪ However branches c so be performed by loading address values directly

into the PC (r15)

▪ armasm provides pseu nstructions to make this easier

Assembler Code

LDR pc, =label ; load address of label into PC

ARMASM

Object Code

LDR pc, [pc, #n]

.

DCD 0x
Li l pool address data

Branches anywhere within the 4GB

address space are thus possible

▪

; r8 points to start of source data

; r9 points to end of source data

; r10 points to start of destination data

r0, [r8], #4 ; load 4 bytes

r0, [r10], #4 ; and store them

loop LDR

STR

CMP

BLT

r8, r9

loop

; check for

; else loop

▪ In thi ample 1 word is copied per i tion

Memory Block Copying (1)

The use of base register updating enables simple copying routines to be

written

▪ For example: The post-indexed variant could be used to copy a block of memory

reasing
Memory

r9

r8

r10

Load and Store Multiples

▪

▪ Syntax:

▪ <LDM|STM>{<cond>}<addressing_mode> Rb{!}, <register list>

4 addressing modes:

▪

▪

▪

▪

LDMIA / STMIA

LDMIB / STMIB

LDMDA / STMDA

LDMDB / STMDB

rement after

rement before

decrement after

decrement before

IA

reasing

Address

r4

r1

r0

r4

r1

r0

r4

r1

r0

r4

r1

r0

r10

IB DA DB

LDMxx r10, {r0,r1,r4}

STMxx r10, {r0,r1,r4}

Base Register (Rb)

▪

▪ For example
; r8 points to start of source data

; r9 points to end of source data

; r10 points to start of destination data

loop LDMIA r8!, {r0-r7} ; load 32 bytes

STMIA r10!, {r0-r7} ; and store them

CMP r8, r9 ; check for

BLT loop ; and loop

▪ In thi ample 8 words are copied per loop

Memory Block Copying (2)

As well as being used for stack operations, the STM / LDM instructions can

perform block copying of memory
reasing

Memory

r8

r10

r9

Stacks

SP 100

FF

1234

AOBE

8034

r4 1
r5 14544
r6 0
r7 12

pc 9020

r7 A0BE

r6 1234

r5 FF

r4 100

9753

8420

1234

1010

8034

A0BE

1234

FF

100

pc 8034

lr 9048

r7 A0BE

r6 1234

r5 FF

r4 100

lr 8034

ABCD

8765

102E

16

FFFF
SP SP

100

FF

1234

A0BE

8034

SP

Old SP

9753

8420

1234

1010

8034

A0BE

1234

FF

100

▪ ARM stack operations are implemented block transfer instructions:

▪ STMFD

▪ LDMFD

(Push)

(Pop)

Store Multiple - Full Descending stack [STMDB]

Load Multiple - Full Descending stack [LDMIA]

▪ Note: Multiple registers will always be stacked in register order from lowest

register to lowest memory location

▪ The order registers are specified has no effect.

STMFD sp!, {r4-r7, lr} LDMFD sp!, {r4-r7, pc}

Top of Memory

▪

▪ Atomic operation of a memory read followed by a memory write whi oves

a byte or word between regis nd memory.

Syntax:

▪ SWP{<cond>}{B} Rd, Rm, [Rn]

▪

▪

Can be used to implement flags

Cannot be generated from C using armcc - must use assembler

Rm Rd

32

1

temp

Memory

Rn

SWP

Software Interrupt (SWI)

▪

▪

▪

▪

Causes an exception trap to the SWI hardware vector

The SWI handler can exam he SWI number to decide what operation has

been requested.

By using the SWI mechanism, an operating system can implement a set of

privileged operations which applications running in user mode can request.

Syntax:

▪ SWI{<cond>} <SWI number>

31 0

Cond SWI number (ignored by processor)

28 27 24 23

1 1 1 1

Condition Field

PSR access

▪

▪

MRS and MSR allow contents of CPSR / SPSR to be transferred to / from a

general purpose register or take an immediate value

▪ MSR allows the whole status register, or just parts of it to be updated

Interrupts can be enable/disabled and modes changed, by writing to the

CPSR

▪ Typically a read/modify/write strategy should be used:

MRS r0,CPSR ; read CPSR into r0

BIC r0,r0,#0x80 ; clear bit 7 to enable IRQ

MSR CPSR_c,r0 ; write modified value to ‘c’ byte only

▪ In User Mode, all bits can be read but only the condition flags (_f) can be

modified

31 28 27 024 23 6 5 4

N Z C V Q de J GE[3:0] IT cond_abc E A I F T mode

f s x c

Coprocessor Instructions

▪

▪

▪

The ARM architecture supports 16 coprocessors

The instructions for each coprocessor occupy a fixed part of the ARM

instruction set

▪ If the appropriate coprocessor is not present in the system, an undefined instruction

exception occurs

There are three types of coprocessor instruction

▪ Coprocessor data processing

▪CDP : Initiate a coprocessor data processing operation

▪ Coprocessor register transfers

▪MRC : Move to ARM register from coprocessor register

▪MCR : Move to Coprocessor register from ARM register

▪ Coprocessor memory transfers

▪LDC : Load coprocessor register from memory

▪STC : Store from coprocessor register to memory

Quiz 2

1. What assembler directive should start every assembler source file?

2. What instructions can be used to return from a leaf subroutine call?

3. What instructions should be used to enable or disable IRQ interrupts?

4. What instructions can be used to e the ± 32MB limitation of the standard ARM

Branch instruction?

5. For what might you use the SWP instruction?

Workbook session 2

▪

▪

Subroutines and stacks

Block copying

Agenda

Architecture v4T

▪ Architecture v5TE

Architecture v6

Thumb

Unified Assembler Language

ARM Architecture v5TE

▪ Architecture v5TE contains full v4T ARM and Thumb instruction sets, plus:

▪ Improved support for ARM / Thumb interworking

▪ Covered in ARM / Thumb Interworking module

▪ Count Leading Zeros instruction

▪ Packed half-word signed multiplication instructions

▪ Support for saturated mathematics

▪ Addition of Q flag to PSRs

▪ Double-word Load / Store instructions

▪ Breakpoint instructions (ARM and Thumb)

▪ Cache Preload instruction

Count Leading Zeros
▪ CLZ{cond} Rd, Rm

▪ returns number of binary zero bits before
the first binary one bit in a register value

▪ source register is scanned from most
significant bit to least significant bit

▪ executes in 1-cycle

(ARM9E-S/ARM102x)

▪ result is 32 if no bits set, zero if bit 31 is set

▪ Used in software divide and floating point
routines.

Left shift of Rm by Rd will normalize Rm▪

▪ Signed normalize requires 1 extra cycle

0000 0010 1110 1101...0R0 =

CLZ R1, R0

0x6R1 =

1011 1011 0100 0000...0Rm =

MOV R0, R0 LSL R1

EOR R1, R0, R0, LSL #1

CLZ R1, R1

MOV R0, R0, LSL R1

T

Rm Rs

B T B

W option

16 16 16 16

32 16

32/64

32/64

Rd
(RdHi,RdLo)

Rn
(RdHi,RdLo)

Signed Multiply Operations

▪

▪

▪

▪

▪

SMULxy{cond} Rd, Rm, Rs

SMULWy{cond} Rd, Rm, Rs

SMLAxy{cond} Rd, Rm, Rs, Rn

SMLAWy{cond} Rd, Rm, Rs, Rn

SMLALxy{cond} RdLo, RdHi, Rm, Rs

▪

▪

▪

▪

Q flag is affected for SMLA instructions (but no

saturation)

x, y selects either Top or Bottom half of register

W selects the upper 32 bits of a 48-bit product

Do not affect NZCV (‘S’ is not allowed)

Saturated Maths Instructions

▪

▪

▪

Saturated maths

Adding 1 to 0x7FFFFFFF causes a transition

from a positive value to a negative value

Subtracting 1 from 0x causes a

transition from a negative value to a positive value

DSP algorithms▪

▪

▪

Saturation is required by several

G.723.1 - VoIP

AMR - Adaptive MultiRate

▪

▪

▪

;Rd = saturate(Rm - Rn)

;Rd = saturate(Rm + Rn)

;Rd = saturate(Rm -

QSUB{cond} Rd, Rm, Rn

QADD{cond} Rd, Rm, Rn

QDSUB{cond} Rd, Rm, Rn

saturate(Rn 2))

▪ ;Rd = saturate(Rm +QDADD{cond} Rd, Rm, Rn

saturate(Rn 2))

▪ Q flag will be set if saturation occurs during these instructions

0x0

0x7FFFFFFF

0x

-ve

+ve

Load / Store Double Registers

LDR/STR{<cond>}D <Rd>, <addressing_mode>

▪ Transfer two adjacent words in memory to / from any of the registers pairs

(r0,r1), (r2,r3), (r4,r5), (r6,r7), (r8,r9), (r10,r11) or (r12,r13)

▪ Rd specifies the even numbered register - the immedia y following odd

numbered register is used for the second transfer

▪ Use same addressing modes as LDRH/STRH

▪ Address is that of the lower of the two words loaded by the LDRD instruction -

the address of the higher word is generated by adding 4 to this address

▪ Address must be doubleword (8-byte) aligned

Breakpoint & Cache Preload

▪ Breakpoint Instruction - BKPT <#imm16>

▪ Set up by debug agent in RAM in system

▪ Immediate value is ignored by the processor

▪ Execution of this instruction will either cause a prefetch abort or cause the

processor to enter debug state (depends on the core design & configuration)

▪ Cache Preload Instruction- PLD [Rn, <offset>]

▪ Offset can be

▪ An unsigned 12-bit immediate value (ie 0 - 4095 bytes).

▪ A register, optionally shifted by an immediate value

▪ ls the memory system that an access to the data at a specified address is likely

to occur soon

▪ PLD is a hint instruction

▪ On implementations that do not support this operation it will behave as a NOP

Quiz 3

1. What does the CLZ instruction do?

2. What is the result of the following instruction?

r1 = 0x7FFFFF00 r2 = 0x

QADD r0, r1, r2

3. Is the following instruction valid?

LDRD r7, [r2, 0x100]

4. What is the affect of the following instruction?

SMULBT r0, r1, r2

Workbook Session 3

▪ Using saturated maths / packed halfword multiplication instructions

▪ Accessing the CPSR

Agenda

Architecture v4T

Architecture v5TE

▪ Architecture v6

Thumb

Unified Assembler Language

以上内容仅为本文档的试下载部分，为可阅读页数的一半内容。如

要下载或阅读全文，请访问：https://d.book118.com/38713020112

5006030

https://d.book118.com/387130201125006030
https://d.book118.com/387130201125006030

