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The IOMMU allows the OS to encapsulate I/O devices 
in their own virtual memory spaces, thus restricting their 
DMAs to specific memory pages. The OS uses the IOMMU 
to protect itself  buggy drivers and malicious/errant 
devices. But the added protection comes ost, degrading 
the throughput of I/O-intensive workloads by up to an order of 
magnitude. This cost has motivated system designers to 
trade off some safety for performance, e.g., by leaving stale 
information in the IOTLB for a while so as to amortize costly 
invalidations. 

We observe that high-bandwidth devices—lik work 
and PCIe SSD controllers—in ct with the OS via circular 
ring buffers that induce a sequential, predictable workload. 
We design a ring IOMMU (rIOMMU) that leverages this 
characteristic by re cing the virtual memory page table hi- 
erarchy with a circular, flat table. A flat table is adequa y 
supported by exactly one IOTLB entry, making every new 
translation an implicit invalidation of the former and thus re- 
quiring explicit invalidations only at  of I/O bursts. Us- 
ing standar working ben arks, we show that rIOMMU 
provides up to 7.56x higher throughput relative to the base- 
line IOMMU, and that it is within 0.77–1.00x the throughput 
of a system without IOMMU protection. 

Categories and Subject Descriptors B.3.2 [memory struc- 
tures]: design styles—virtual memory; B.4.2 [I/O and data 
communications]: I/O devices—channels and controllers; 
D.4.2 [operating systems]: storage management—virtual 
memory, allocation/deallocation strategies 

General Terms  design, experimentation, performance 

  I/O memory management unit 

1. Introduction 

 
I/O device drivers initiate direct memory accesses (DMAs) 
to asynchronously move data from their devices into memory 
and vice versa. In the past, DMAs used physical memory 
addresses. But such unmediated access made systems vul- 
nerable to (1) rogue devices that might perform errant or 
malicious DMAs [9, 12, 28, 32, 52], and to (2) buggy drivers 
th count for most operating system (OS) failures and 
might wrongfully trigger DMAs to arbitrary memory loca- 
tions [8, 13, 23, 36, 47, 50]. Subsequently, all major chip 
vendors introduced I/O memory management units (IOM- 
MUs) [3, 7, 25, 28], which allow DMAs to execute with I/O 
virtual addresses (IOVAs). The IOMMU translates the IOVAs 
into physical addresses according to I/O page tables that are 
setup by the OS. The OS thus protects itself by adding a trans- 
lation just before the corresponding DMA, and by removing 
the translation right after [11, 16, 51]. We ex in in detail 
how the IOMMU is implemented and used in §2. 

DMA protection comes ost that can be substantial in 
terms of performance [4, 10, 51], for newer, high-throughput 
I/O devices like 10/40 Gbp work controllers (NICs), 
which can deliver millions of packets per second. Our mea- 
surements indicate that using DMA protection with such 
devices can reduce the throughput by up to 10x. This penalty 
has motivated OS developers to trade off some protection for 
performance. For example, when employing the “deferred” 
IOMMU mode, the Linux kernel defers IOTLB invalidations 
for a short while instead of performing them immedia y, 
because invalidations are slow. Later, the kernel processes 
the accumulated invalidations en masse by flushing the entire 
IOTLB, thus amortizing the overhead at the risk of allowing 
devices to erroneously utilize stale IOTLB entries. While this 
tradeoff can double the performance relative to the stricter 
IOMMU mode, the throughput is still 5x lower than when the 
IOMMU is disabled. We yze and model the overheads 
associated with using the IOMMU in §3. 

We argue that the degraded performance is largely due to 
the IOMMU needlessly replicating the design of the regular 
MMU, which is based on hierarchical page tables. Our claim 
pertains high-bandwidth I/O devices, such as NICs and PCIe 
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SSD drives, which utilize circular “ring” buffers to in ct 
with the OS. A ring is an array of descriptors that the OS 
driver sets when initiating DMAs. Descriptors encapsulate the 
DMA details, luding the associated IOVAs. Importantly, 
ring semantics dictate that (1) the driver work through the 
ring in order, one descriptor after the other, and that (2) the 
I/O device process these descriptors in the same order. Thus, 
IOVAs are short-lived and the sequence in which they are 
used is linearly predictable: each IOVA is allocated, ced 
in the ring, used in turn, and deallocated. 

We propose a ring IOMMU (rIOMMU) that supports 
this pervasive sequential model using flat (1D) page tables 
that directly correspond to the nature of rings. RIOMMU 
has three advantages over the baseline IOMMU that signifi- 
cantly reduce the overhead of DMA protection. First, build- 
ing/destroying an IOVA translation in a flat table is quicker 
than in a hierarchical structure. Second, (de)allocation of 
IOVAs—the actual integers serving as virtual addresses—is 
faster, as IOVAs are indices of flat tables in our design. Finally, 
the frequency of IOTLB invalidations is substantially reduced, 
because the rIOMMU designates only one IOTLB entry per 
ring. One is enough because IOVAs are used sequentially, 
one after the other. Consequently, every translation inserted 
to the IOTLB removes the previous translation, eliminating 
the need to explicitly invalidate the latter. And s e the OS 
handles high-throughput I/O in bursts, explicit invalidations 
become rare. We describe rIOMMU in §4. 

We evaluate the performance of rIOMMU usin work- 
ing ben arks and find that it improves throughput by 1.00— 
7.56x, shortens latency by 0.80–0.99x, and reduces CPU con- 
sumption by 0.36–1.00x relative to the existing IOMMU. Our 
fastest rIOMMU vari  within 0.77–1.00x the throughput, 
1.00–1.04x the latency, and 1.00–1.22x the CPU consumption of 
a system that disables the IOMMU entirely. We describe 
our experimental evaluation in §5. 

I/O 
virtual 

address 

virtual 
address 

physical 
address 

physical 
address 

Figure 1. The IOMMU is for devices what the MMU is for 
processes. 

using its notion of (guest) “physical” addresses. The host 
uses the IOMMU to redirect these accesses to where the 
VM memory truly resides, thus protecting its own memory 
and the memory of the other VMs. With inter-OS protection, 
IOVAs are mapped to physical memory locations infrequently, 
typically only upon such events as VM creation and migration. 
Su ap s are therefore denoted static or persistent [51]; 
they are not the focus of this paper. 

Intra-OS protection allows the OS to defend  the 
DMAs of errant/malicious devices [9, 12, 17, 28, 32, 52] and 
of buggy drivers, which account for most OS failures [8, 13, 
23, 36, 47, 50]. Drivers and their I/O devices can perform 
DMAs to arbitrary memory addresses, and IOMMUs allow 
OSes to protect themselves (and their processes)  such 
accesses, by restricting them to specific physical locations. 
In this mode of work, map operations (of IOVAs to physical 
addresses) and unmap operations (invalidations of previous 
maps) are frequent and occur within the I/O critical path, such 
that each DMA is preceded and followed by the map  
and unmap  of the corresponding IOVA [32, 40]. Due 
to their short lifespan, these map s are denoted dynamic 
[11], streaming [16] or single-use [51]. This strategy of 
IOMMU-based intra-OS protection is the focus of this paper. 
It is recommended by hardware vendors [24, 28, 32] and 
employed by operating systems [6, 11, 16, 26, 38, 51].1 It 
is applicable in non-virtual setups where the OS has direct 
control over the IOMMU. It is likewise applicable in virtual 
setups where IOMMU functionality i posed to VMs via 
paravirtualization [10, 36, 45, 51], full emulation [4], and, 
more recently, hardware support for nested IOMMU 
translation [3, 28]. 

2.2  IOMMU Design and Implementation 

Given a target memory buffer of a DMA, the OS associates 
the physical address (PA) of the buffer with an IOVA. The 
OS maps the IOVA to the PA by inserting the IOVA⇒PA 

2. Background 

 
2.1 Operating System DMA Protection 

The role the IOMMU ys for I/O devices is similar to the 
role the regular MMU ys for processes, as illustrated in 
Figure 1. Processes typically access the memory using 
virtual addresses, which are translated to physical addresses 
by the MMU. ogously, I/O devices commonly access the 
memory via DMAs associated with IOVAs. The IOVAs are 
translated to physical addresses by the IOMMU. 

The IOMMU provides inter- and intra-OS protection [4, 
49, 51, 53]. Inter-OS protection is applicable in virtual 
setups. It allows for “direct I/O”, where the host assigns 
a device directly to a guest virtual machine (VM) for its 
exclusive use, largely removing itself from the guest’s I/O 
path and thus improving its performance [22, 36]. In this 
mode of operation, the VM directly programs device DMAs 

1 For example, the DMA API of Linux notes that “DMA addresses should 
be mapped only for the time they are actually used and unmapped after 
the DMA transfer” [40]. In particular, “once a buffer has been mapped, it 
belongs to the device, not the processor. Until the buffer has been unmapped, 
the [OS] driver should not touch its contents in any way. Only after [the 
unmap of the buffer] has been called is it safe for the driver to access the 
contents of the buffer” [16]. 
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requester identifier IOVA (DMA address) I/O device registers DRAM 
bus dev func 

0 
0…0 idx idx idx idx offset N-1 

15 8 3 63 48 39 30 21 12 0 

target buffer tail 6 
5 
4 
3 
2 
1 
0 

(updated by OS) 

 PTE  target buffer root 
 entry  

context 
 entry  

 PTE  
 PTE  

 PTE 
target buffer 

target buffer 
head (updated by device) 

page table hierarchy context 
table 

root 
table base 

size=N 
(configured by OS) 

ring buffer 
63 12 0 

PFN offset 
physical address 

Figure 3. The driver drives its device via a ring. With an 
IOMMU, register/target pointers are IOVAs. Figure 2. IOVA translation with the In  IOMMU. 

An IOMMU table walk fails if a matching translation was 
not previously established by the OS, a situation which is log- 
ically similar to encountering a null pointer value during the 
walk. A walk additionally fails if the DMA being processed 

s with the read/write permission bits found within the 
page table entries along the traversed radix tree path. We note 
in passing that, at present, ontrast to MMU memory ac- 
cesses, DMAs are typically not restartable. Namely, existing 
systems usually do not support “I/O page faults”, and hence 
the OS cannot populate the IOMMU page table hierarchy 
on demand. Instead, IOVA translations of valid DMAs are 
expected to be successful, and the corresponding pages must be 
pinned to memory. (Albeit I/O page fault standardization 
doe ist [42].) 

translation to the IOMMU data structures. Figure 2 depicts 
these structures as implemented by In  x86-64 [28]. The PCI 
protocol dictates that each DMA operation is associated with a 
16-bit request identifier comprised of a bus-device-function 
triplet that uniquely identifies the corresponding I/O device. 
The IOMMU uses the 8-bit bus number to index the root table 
in order to retrieve the physical address of the context table. 
It then indexes the context table using the 8-bit concatenation 
of the device and function numbers. The result is the physical 
location of the root of the page table hierarchy that houses all 

of the IOVA⇒PA translations of that I/O device. 
The purpose of the IOMMU page table hierarchy is similar 

to that of the MMU hierarchy: recording the map  from 
virtual to physical addresses by utilizing a 4-level radix tree. 
Each 48-bit (I/O) virtual address is divided into two: the 36 
high-order bits, which constitute the virtual page number, and 

2.3  I/O Devices Employing Ring Buffers 

Many I/O devices—notably NICs and disk drives—deliver 
their I/O through one or more producer/consumer ring buffers. A 
ring is an array shared between the OS device driver and 
the associated device, as illustrated in Figure 3. The ring 
is circular in that the device and driver wrap around to the 
beginning of the array when they reach i d. The 
entries in the ring are called DMA descriptors. Their exact 
format and content vary between devices, but they specify at 
least the address and size of the corresponding target buffers. 
Additionally, the descriptors commonly contain status bits 
that help the driver and the device to synchronize. 

Devices must also know the direction of each requested 
DMA, namely, whether the data should be transmitted from 
memory (into the device) or received (from the device) into 
memory. The direction can be specified in the descriptor, 
as is typical for disk controllers. Or the device can employ 
different rings for receive and transmit activity, in which case 
the direction is implied by the ring. The receive and transmit 
rings are denoted Rx and Tx, respectively. NICs employ at 
least one Rx and x per port. They may employ multiple 
Rx/Tx rings per port to promote scalability, as different rings 
can be handled concurrently by different cores. 

the 12 low-order bits, which are the offset within the page. 
The translation procedure applies to the virtual page number 
only, converting it into a physical fra mber (PFN) that 
corresponds to the physical memory location being addressed. 
The offset is the same for both physical and virtual pages. 

Let Tj denote a page table in the j-th radix tree level for 
j = 1, 2, 3, 4, such that T1 is the root of the tree. Each Tj is 

a 4KB page containing up to 29 = 512 pointers to physical 

locations of next-level Tj+1 tables. Last-level—T4—tables 
contain PFNs of target buffer locations. Correspondingly, the 
36-bit virtual page number is split into a sequence of four 9-bit 
indices i1, i2, i3 and i4, such that i j is used to index Tj in order 
to find the physical address of the next Tj+1 along the radix 

tree path. Logically,  pointer notation, T1[i1][i2][i3][i4] is 
the PFN of the target memory location. 

Similarly to the MMU translation lookaside buffer (TLB), 
the IOMMU caches translations using an IOTLB, which it 
fills on-the-fly as follows. Upon an IOTLB miss, the IOMMU 
hardware hierarchically walks the page table as described 

above, and it inserts the IOVA⇒PA translation to the IOTLB. 
IOTLB entries are invalidated explicitly by the OS as part of 
the corresponding unmap operation. 
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Upon initialization, the OS device driver allocates the rings 
and configures the I/O device with the ring sizes and base 
locations. For each ring, the device and driver utilize a head 
and a tail pointers to delimit the ring content that can be used 
by the device: [head, tail). The device i tively consumes 
(removes) descriptors from the head, and it rements the 
head to point to the next descriptor to be used next. Similarly, 
the driver adds descriptors to the tail, rementing the tail to 
point to the entry it will use subsequently. 

A device asynchronously informs its OS driver that data 
was transmitted or received by triggering an interrupt. The 
device coalesces interrupts when their rate is high. Upon 
receiving an interrupt, the driver of a high-throughput device 
handles the entire I/O burst. Namely, it sequentially i tes 
through and processes all the descriptors whose correspond- 
ing DMAs have completed, 

(1) 
allocate p 

memory 
allocator 

device 
driver 

(6) 
add v 

ring 
buffer 

(2) 
map p 

(5) 
return v 

(3) 
allocate v 

(4) 
map v=>p 

IOVA 
allocator 

IOMMU 
driver 

page table 
hierarchy 

Figure 4. The I/O device driver maps an IOVA v to a physi- 
cal target buffer p. It then assigns v to the DMA descriptor. 

(1) read head 
I/O 

device IOMMU 
(5) write to v 

(4) 
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(3) 
read head 

ring 
buffer 

page table 
hierarchy buffer 

3. Cost of Safety 

 
This section enumerates the overhead components involved in 
using the IOMMU in the Linux/In  kernel (§3.1). It 
experimentally fies the overhead of each component 
(§3.2). And it provides and validates a simple performance 
model that allows us to understand how the overhead affects 
performance and to assess the benefits of reducing it (§3.3). 

3.1 Overhead Components 

Suppose that a device driver that employs a ring wants to 
transmit or receive data from/to a target buffer. Figure 4 lists 
the actions it carries out. First, it allocates the target buffer, 
whose physical address is denoted p (1). (For simplicity, let 
us assume that p is page aligned.) It pins p to memory and 
then asks the IOMMU driver to map the buffer to some IOVA, 
such that the I/O device would be able to access p (2). The 
IOMMU driver invokes its IOVA allocator, which returns 
a new IOVA v—an integer that is not associated with any 
other page currently accessible to the I/O device (3). The 

Figure 5. The I/O device writes the packet it receives to the 
target buffer through v, which the IOMMU translates to p. 

(5) 
hand p 

software 
stack 

device 
driver IOTLB 

(1) 
unmap p=>v 

(4) 
 v 

(2) IOVA 
allocator 

IOMMU 
driver 

page table 
unmap v=>p hierarchy 

Figure 6. After the DMA completes, the I/O device driver 
unmaps v and passes p to a higher-level software layer. 

walks the page table if the v⇒p translation is missing (6), 
and redirects the received data to p (7). 

Figure 6 shows the actions the device driver carries out 
after the DMA operation is completed. The device driver asks 
the IOMMU driver to unmap the IOVA v (1). In response, 

IOMMU driver then inserts the v⇒p translation to the page 
table hierarchy of the I/O device (4), and it returns v to the 
device driver (5). Finally, when updating the corresponding 
ring descriptor, the device driver uses v as the address for the 
target buffer of the associated DMA operation (6). 

Assume that the latter is a receive DMA. Figure 5 details 
the activity taking ce when the I/O device gets the data. 
The device reads the DMA descriptor through its head register. 
The address held by the head is an IOVA, so it is intercepted 
by the IOMMU (1). The IOMMU consults its IOTLB to find 
a translation for the head IOVA. If the translation is missing, 
the IOMMU walks the page table hierarchy of the device 
to resolve the miss (2). Equipped with the head’s physical 
address, the IOMMU translates the head descriptor for of the 
device (3). The head descriptor specifies that v (IOVA defined 

above) is the address of the target buffer (4), so the device 
writes the received data to v (5). The IOMMU intercepts v, 

the IOMMU driver removes the v⇒p map  from the page 
table hierarchy (2), purges the map  from the IOTLB (3), 
and deallocates v (4). (The order of these actions is important.) 
Once the I/O device can no longer access p, it is safe for the 
device driver to hand the buffer to higher levels in the software 
stack for further processing (5). 

3.2  Protection Modes and Measured Overhead 

We experimentally fy the overhead components of the 
map and unmap functions—outlined in Figures 4 and 6—of 
the IOMMU driver. To this end, we execute the standar - 
perf TCP stream ben ark, which attempts to ize 
network throughput between two machines over a TCP con- 
nection. (The experimental setup is detailed in §5.) 
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 function component strict strict+ defer defer+  for performance. Instead of invalidating entri ght away, 
the IOMMU driver queues the invalidations until 250 d 
IOVAs accumulate. It then processes all of them in bulk by 
invalidating the entire IOTLB. This approach affects the cost 
of (un)map  in two ways, as shown in Table 1 in the defer 
and defer+ columns. (Defer+ is to defer what strict+ is to 

strict.) First, as intended, i iminates the cost of invalidating 
individual IOTLB entries. And second, it reduces the cost of 
IOVA allocation in the baseline deferred mode as compared 
to strict (1,674 vs. 3,986), because deallocating IOVAs in 
bulk reduces somewhat the aforementioned linear pathology. 
The drawback of deferred protection is that the I/O device 

might erroneously access target buffers through stale IOTLB 
entries after the buffers have already been handed back to 
higher software stack levels (Step 5 in Figure 6). Notably, at 

this point, the buffers could be (re)used for other purposes. 

3.3  Performance Model 

Let C denote the average number of CPU cycles required 
to process one packet. Figure 7 shows C for each of the 
aforementioned IOMMU modes in our experimental setup. 
The bottommost horizontal grid line shows Cnone, which is 
C when the IOMMU is turned off. We can see, for example, 
that Cstrict is nearly 10x higher than Cnone. 

Our experimental setup employs a NIC that uses two 
target buffers per packet: one for the header and one for the 
data. Each packet thus requires two map and two unmap 
invocations. So the processing of the packet ludes: two 
IOVA (de)allocations; two page table insertions and deletions; 
and two invalidations of IOTLB entries. The corresponding 
aggregated cycles are respectively depicted as the three top 
stacked sub-bars in the figure. The bottom, “other” sub-bar 
embodies all the rest of the packet processing activity, notably 
TCP/IP and interrupt processing. As noted, the deferred 
modes eliminate the IOTLB invalidation overhead, and the 
“+” modes reduce the overhead of IOVA (de)allocation. But 
even Cde f er+ (the most performant mode, which introduces a 
vulnerability window) is still over 3.3x higher than Cnone. 

We find that the way the value of C affects the overall 
throughput o perf is simple and intuitive. Specifically, 
if S denotes the cycles-per-second clock speed of the core, 
then S/C is the number of packets the core can handle per 
second. And s e every Ethe  packet carries 1,500 bytes, 

the throughput of the system in Gbps should be Gbps(C) = 
S 

map iova alloc 
page table 
other 
sum 

iova find 
iova  
page table 
iotlb inv 
other 
sum 

3986 
588 

44 
4618 

249 
159 
438 

2127 
26 

2999 

92 
590 

45 
727 

418 
62 

427 
2135 

25 
3067 

1674 
533 

44 
2251 

263 
189 
471 

9 
205 

1137 

108 
577 

42 
727 

454 
57 

504 
9 

216 
1240 

unmap 

Table 1. Average cycles breakdown of the (un)map func- 
tions of the IOMMU driver for different protection modes. 

Strict Protection We begin by profiling the Linux kernel in 
its safer IOMMU mode, denoted strict, which strictly follows 
the map/unmap procedures described in §3.1. Table 1 shows 
the average duration of the components of these procedures in 
cycles. The strict/map breakdown indicates that its most 
costly component is, surprisingly, IOVA allocation (Step 3 
in Figure 4). Upon further investigation, we found that the 
reason for this high cost is a nontrivial pathology in the Linux 
IOVA allocator that regularly causes some allocations to be 
linear in the number of currently allocated IOVAs. We were 
able to come up with a more efficient IOVA allocator, which 
consistently allocates/ s onstant time [37]. We denote 
this optimized IOMMU mode—which is quicker than strict 
but equivalent to it in terms of safety—as strict+. Table 1 
shows that strict+ indeed reduces the allocation time from 
nearly 4,000 cycles to less than 100. 

The remaining dominant strict(+)/map overhead is the 
insertion of the IOVA to the IOMMU page table (Step 4 in 
Figure 4). The 500+ cycles of the insertion are due to 
explicit memory barriers and cacheline flushes that the driver 
performs when updating the hierarchy. Flushes are required, 
as the I/O page walk is oherent with the CPU caches on 
our system. (This is common nowadays; In  started ship  
servers with coherent I/O page walks only recently.) 

Focusing on the unmap components of strict/strict+, we 
see that finding the unmapped IOVA in the allocator’s data 
structure is costlier in strict+ mode. The reason: like the 
baseline strict, strict+ utilizes a red-black tree to hold the 
IOVAs. But the strict+ tree is fuller, so the logarithmic search 
is longer. Conversely strict+/  (Step 4 in Figure 6) is done 

onstant time, rather than logarithmic, so it is quicker. 
The other unmap components are: removing the IOVA from 
the page tables (Step 2 in Figure 6) and the IOTLB (Step 
3). The removal takes 400+ cycles, which is comparable to 
the duration of insertion. IOTLB invalidation is by far the 
slowest unmap component at around 2,000 cycles; this result is 
consistent with previous work [4, 53]. 

Deferred Protection In order to reduce the high cost of 
invalidating IOTLB entries, the Linux deferred protection 
mode relaxes strictness somewhat, trading off some safety 

1500 byte × 8 bit × , assuming S is given in GHz. Figure C 
8 shows that this simple model (thick line) is accurate. It 
co ides with the throughput obtained when systematically 
lengthening Cnone using a carefully controlled busy-wait loop 
(thin line). It also co ides with the throughput measured 
under the different IOMMU modes (cross points). 

Consequences As our model is accurate, we conclude that 
the translation activity carried out by the IOMMU (as de- 
picted in Figure 5) does not affect the performance of the 
system, even when servicing demanding ben arks like 
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