

rIOMMU:

Efficient IOMMU for I/O Devices that Employ Ring Buffers

Moshe Malka Nadav Amit Muli Ben-Yehu n Tsafrir

Technion – Israel Institute of Technology

{moshemal,namit,muli,dan}@cs.technion.ac.il

The IOMMU allows the OS to encapsulate I/O devices
in their own virtual memory spaces, thus restricting their
DMAs to specific memory pages. The OS uses the IOMMU
to protect itself buggy drivers and malicious/errant
devices. But the added protection comes ost, degrading
the throughput of I/O-intensive workloads by up to an order of
magnitude. This cost has motivated system designers to
trade off some safety for performance, e.g., by leaving stale
information in the IOTLB for a while so as to amortize costly
invalidations.

We observe that high-bandwidth devices—lik work
and PCIe SSD controllers—in ct with the OS via circular
ring buffers that induce a sequential, predictable workload.
We design a ring IOMMU (rIOMMU) that leverages this
characteristic by re cing the virtual memory page table hi-
erarchy with a circular, flat table. A flat table is adequa y
supported by exactly one IOTLB entry, making every new
translation an implicit invalidation of the former and thus re-
quiring explicit invalidations only at of I/O bursts. Us-
ing standar working ben arks, we show that rIOMMU
provides up to 7.56x higher throughput relative to the base-
line IOMMU, and that it is within 0.77–1.00x the throughput
of a system without IOMMU protection.

Categories and Subject Descriptors B.3.2 [memory struc-
tures]: design styles—virtual memory; B.4.2 [I/O and data
communications]: I/O devices—channels and controllers;
D.4.2 [operating systems]: storage management—virtual
memory, allocation/deallocation strategies

General Terms design, experimentation, performance

 I/O memory management unit

1. Introduction

I/O device drivers initiate direct memory accesses (DMAs)
to asynchronously move data from their devices into memory
and vice versa. In the past, DMAs used physical memory
addresses. But such unmediated access made systems vul-
nerable to (1) rogue devices that might perform errant or
malicious DMAs [9, 12, 28, 32, 52], and to (2) buggy drivers
th count for most operating system (OS) failures and
might wrongfully trigger DMAs to arbitrary memory loca-
tions [8, 13, 23, 36, 47, 50]. Subsequently, all major chip
vendors introduced I/O memory management units (IOM-
MUs) [3, 7, 25, 28], which allow DMAs to execute with I/O
virtual addresses (IOVAs). The IOMMU translates the IOVAs
into physical addresses according to I/O page tables that are
setup by the OS. The OS thus protects itself by adding a trans-
lation just before the corresponding DMA, and by removing
the translation right after [11, 16, 51]. We ex in in detail
how the IOMMU is implemented and used in §2.

DMA protection comes ost that can be substantial in
terms of performance [4, 10, 51], for newer, high-throughput
I/O devices like 10/40 Gbp work controllers (NICs),
which can deliver millions of packets per second. Our mea-
surements indicate that using DMA protection with such
devices can reduce the throughput by up to 10x. This penalty
has motivated OS developers to trade off some protection for
performance. For example, when employing the “deferred”
IOMMU mode, the Linux kernel defers IOTLB invalidations
for a short while instead of performing them immedia y,
because invalidations are slow. Later, the kernel processes
the accumulated invalidations en masse by flushing the entire
IOTLB, thus amortizing the overhead at the risk of allowing
devices to erroneously utilize stale IOTLB entries. While this
tradeoff can double the performance relative to the stricter
IOMMU mode, the throughput is still 5x lower than when the
IOMMU is disabled. We yze and model the overheads
associated with using the IOMMU in §3.

We argue that the degraded performance is largely due to
the IOMMU needlessly replicating the design of the regular
MMU, which is based on hierarchical page tables. Our claim
pertains high-bandwidth I/O devices, such as NICs and PCIe

Permission to make digital or hard copies of all or part of this work for al or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation on
the first page. Copyrights for components of this work owned by others than ACM
must be honored. ing with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.

ASPLOS ’15, March 14–18, 2015, Istanbul, Turkey.
Copyright c 2015 ACM 978-1-4503-2835-7/15/03. . . $15.00.

.

355

SSD drives, which utilize circular “ring” buffers to in ct
with the OS. A ring is an array of descriptors that the OS
driver sets when initiating DMAs. Descriptors encapsulate the
DMA details, luding the associated IOVAs. Importantly,
ring semantics dictate that (1) the driver work through the
ring in order, one descriptor after the other, and that (2) the
I/O device process these descriptors in the same order. Thus,
IOVAs are short-lived and the sequence in which they are
used is linearly predictable: each IOVA is allocated, ced
in the ring, used in turn, and deallocated.

We propose a ring IOMMU (rIOMMU) that supports
this pervasive sequential model using flat (1D) page tables
that directly correspond to the nature of rings. RIOMMU
has three advantages over the baseline IOMMU that signifi-
cantly reduce the overhead of DMA protection. First, build-
ing/destroying an IOVA translation in a flat table is quicker
than in a hierarchical structure. Second, (de)allocation of
IOVAs—the actual integers serving as virtual addresses—is
faster, as IOVAs are indices of flat tables in our design. Finally,
the frequency of IOTLB invalidations is substantially reduced,
because the rIOMMU designates only one IOTLB entry per
ring. One is enough because IOVAs are used sequentially,
one after the other. Consequently, every translation inserted
to the IOTLB removes the previous translation, eliminating
the need to explicitly invalidate the latter. And s e the OS
handles high-throughput I/O in bursts, explicit invalidations
become rare. We describe rIOMMU in §4.

We evaluate the performance of rIOMMU usin work-
ing ben arks and find that it improves throughput by 1.00—
7.56x, shortens latency by 0.80–0.99x, and reduces CPU con-
sumption by 0.36–1.00x relative to the existing IOMMU. Our
fastest rIOMMU vari within 0.77–1.00x the throughput,
1.00–1.04x the latency, and 1.00–1.22x the CPU consumption of
a system that disables the IOMMU entirely. We describe
our experimental evaluation in §5.

I/O
virtual

address

virtual
address

physical
address

physical
address

Figure 1. The IOMMU is for devices what the MMU is for
processes.

using its notion of (guest) “physical” addresses. The host
uses the IOMMU to redirect these accesses to where the
VM memory truly resides, thus protecting its own memory
and the memory of the other VMs. With inter-OS protection,
IOVAs are mapped to physical memory locations infrequently,
typically only upon such events as VM creation and migration.
Su ap s are therefore denoted static or persistent [51];
they are not the focus of this paper.

Intra-OS protection allows the OS to defend the
DMAs of errant/malicious devices [9, 12, 17, 28, 32, 52] and
of buggy drivers, which account for most OS failures [8, 13,
23, 36, 47, 50]. Drivers and their I/O devices can perform
DMAs to arbitrary memory addresses, and IOMMUs allow
OSes to protect themselves (and their processes) such
accesses, by restricting them to specific physical locations.
In this mode of work, map operations (of IOVAs to physical
addresses) and unmap operations (invalidations of previous
maps) are frequent and occur within the I/O critical path, such
that each DMA is preceded and followed by the map
and unmap of the corresponding IOVA [32, 40]. Due
to their short lifespan, these map s are denoted dynamic
[11], streaming [16] or single-use [51]. This strategy of
IOMMU-based intra-OS protection is the focus of this paper.
It is recommended by hardware vendors [24, 28, 32] and
employed by operating systems [6, 11, 16, 26, 38, 51].1 It
is applicable in non-virtual setups where the OS has direct
control over the IOMMU. It is likewise applicable in virtual
setups where IOMMU functionality i posed to VMs via
paravirtualization [10, 36, 45, 51], full emulation [4], and,
more recently, hardware support for nested IOMMU
translation [3, 28].

2.2 IOMMU Design and Implementation

Given a target memory buffer of a DMA, the OS associates
the physical address (PA) of the buffer with an IOVA. The
OS maps the IOVA to the PA by inserting the IOVA⇒PA

2. Background

2.1 Operating System DMA Protection

The role the IOMMU ys for I/O devices is similar to the
role the regular MMU ys for processes, as illustrated in
Figure 1. Processes typically access the memory using
virtual addresses, which are translated to physical addresses
by the MMU. ogously, I/O devices commonly access the
memory via DMAs associated with IOVAs. The IOVAs are
translated to physical addresses by the IOMMU.

The IOMMU provides inter- and intra-OS protection [4,
49, 51, 53]. Inter-OS protection is applicable in virtual
setups. It allows for “direct I/O”, where the host assigns
a device directly to a guest virtual machine (VM) for its
exclusive use, largely removing itself from the guest’s I/O
path and thus improving its performance [22, 36]. In this
mode of operation, the VM directly programs device DMAs

1 For example, the DMA API of Linux notes that “DMA addresses should
be mapped only for the time they are actually used and unmapped after
the DMA transfer” [40]. In particular, “once a buffer has been mapped, it
belongs to the device, not the processor. Until the buffer has been unmapped,
the [OS] driver should not touch its contents in any way. Only after [the
unmap of the buffer] has been called is it safe for the driver to access the
contents of the buffer” [16].

356

C
PU

M
M

U

TL
B

p
h

ys
ic

al
 m

em
o

ry

IO
M

M
U

IO

TL
B

I/
O

 d
ev

ic
e

requester identifier IOVA (DMA address) I/O device registers DRAM
bus dev func

0
0…0 idx idx idx idx offset N-1

15 8 3 63 48 39 30 21 12 0

target buffer tail 6
5
4
3
2
1
0

(updated by OS)

 PTE target buffer root
 entry

context
 entry

 PTE
 PTE

 PTE
target buffer

target buffer
head (updated by device)

page table hierarchy context
table

root
table base

size=N
(configured by OS)

ring buffer
63 12 0

PFN offset
physical address

Figure 3. The driver drives its device via a ring. With an
IOMMU, register/target pointers are IOVAs. Figure 2. IOVA translation with the In IOMMU.

An IOMMU table walk fails if a matching translation was
not previously established by the OS, a situation which is log-
ically similar to encountering a null pointer value during the
walk. A walk additionally fails if the DMA being processed

s with the read/write permission bits found within the
page table entries along the traversed radix tree path. We note
in passing that, at present, ontrast to MMU memory ac-
cesses, DMAs are typically not restartable. Namely, existing
systems usually do not support “I/O page faults”, and hence
the OS cannot populate the IOMMU page table hierarchy
on demand. Instead, IOVA translations of valid DMAs are
expected to be successful, and the corresponding pages must be
pinned to memory. (Albeit I/O page fault standardization
doe ist [42].)

translation to the IOMMU data structures. Figure 2 depicts
these structures as implemented by In x86-64 [28]. The PCI
protocol dictates that each DMA operation is associated with a
16-bit request identifier comprised of a bus-device-function
triplet that uniquely identifies the corresponding I/O device.
The IOMMU uses the 8-bit bus number to index the root table
in order to retrieve the physical address of the context table.
It then indexes the context table using the 8-bit concatenation
of the device and function numbers. The result is the physical
location of the root of the page table hierarchy that houses all

of the IOVA⇒PA translations of that I/O device.
The purpose of the IOMMU page table hierarchy is similar

to that of the MMU hierarchy: recording the map from
virtual to physical addresses by utilizing a 4-level radix tree.
Each 48-bit (I/O) virtual address is divided into two: the 36
high-order bits, which constitute the virtual page number, and

2.3 I/O Devices Employing Ring Buffers

Many I/O devices—notably NICs and disk drives—deliver
their I/O through one or more producer/consumer ring buffers. A
ring is an array shared between the OS device driver and
the associated device, as illustrated in Figure 3. The ring
is circular in that the device and driver wrap around to the
beginning of the array when they reach i d. The
entries in the ring are called DMA descriptors. Their exact
format and content vary between devices, but they specify at
least the address and size of the corresponding target buffers.
Additionally, the descriptors commonly contain status bits
that help the driver and the device to synchronize.

Devices must also know the direction of each requested
DMA, namely, whether the data should be transmitted from
memory (into the device) or received (from the device) into
memory. The direction can be specified in the descriptor,
as is typical for disk controllers. Or the device can employ
different rings for receive and transmit activity, in which case
the direction is implied by the ring. The receive and transmit
rings are denoted Rx and Tx, respectively. NICs employ at
least one Rx and x per port. They may employ multiple
Rx/Tx rings per port to promote scalability, as different rings
can be handled concurrently by different cores.

the 12 low-order bits, which are the offset within the page.
The translation procedure applies to the virtual page number
only, converting it into a physical fra mber (PFN) that
corresponds to the physical memory location being addressed.
The offset is the same for both physical and virtual pages.

Let Tj denote a page table in the j-th radix tree level for
j = 1, 2, 3, 4, such that T1 is the root of the tree. Each Tj is

a 4KB page containing up to 29 = 512 pointers to physical

locations of next-level Tj+1 tables. Last-level—T4—tables
contain PFNs of target buffer locations. Correspondingly, the
36-bit virtual page number is split into a sequence of four 9-bit
indices i1, i2, i3 and i4, such that i j is used to index Tj in order
to find the physical address of the next Tj+1 along the radix

tree path. Logically, pointer notation, T1[i1][i2][i3][i4] is
the PFN of the target memory location.

Similarly to the MMU translation lookaside buffer (TLB),
the IOMMU caches translations using an IOTLB, which it
fills on-the-fly as follows. Upon an IOTLB miss, the IOMMU
hardware hierarchically walks the page table as described

above, and it inserts the IOVA⇒PA translation to the IOTLB.
IOTLB entries are invalidated explicitly by the OS as part of
the corresponding unmap operation.

357

Upon initialization, the OS device driver allocates the rings
and configures the I/O device with the ring sizes and base
locations. For each ring, the device and driver utilize a head
and a tail pointers to delimit the ring content that can be used
by the device: [head, tail). The device i tively consumes
(removes) descriptors from the head, and it rements the
head to point to the next descriptor to be used next. Similarly,
the driver adds descriptors to the tail, rementing the tail to
point to the entry it will use subsequently.

A device asynchronously informs its OS driver that data
was transmitted or received by triggering an interrupt. The
device coalesces interrupts when their rate is high. Upon
receiving an interrupt, the driver of a high-throughput device
handles the entire I/O burst. Namely, it sequentially i tes
through and processes all the descriptors whose correspond-
ing DMAs have completed,

(1)
allocate p

memory
allocator

device
driver

(6)
add v

ring
buffer

(2)
map p

(5)
return v

(3)
allocate v

(4)
map v=>p

IOVA
allocator

IOMMU
driver

page table
hierarchy

Figure 4. The I/O device driver maps an IOVA v to a physi-
cal target buffer p. It then assigns v to the DMA descriptor.

(1) read head
I/O

device IOMMU
(5) write to v

(4)
get v

(3)
read head

ring
buffer

page table
hierarchy buffer

3. Cost of Safety

This section enumerates the overhead components involved in
using the IOMMU in the Linux/In kernel (§3.1). It
experimentally fies the overhead of each component
(§3.2). And it provides and validates a simple performance
model that allows us to understand how the overhead affects
performance and to assess the benefits of reducing it (§3.3).

3.1 Overhead Components

Suppose that a device driver that employs a ring wants to
transmit or receive data from/to a target buffer. Figure 4 lists
the actions it carries out. First, it allocates the target buffer,
whose physical address is denoted p (1). (For simplicity, let
us assume that p is page aligned.) It pins p to memory and
then asks the IOMMU driver to map the buffer to some IOVA,
such that the I/O device would be able to access p (2). The
IOMMU driver invokes its IOVA allocator, which returns
a new IOVA v—an integer that is not associated with any
other page currently accessible to the I/O device (3). The

Figure 5. The I/O device writes the packet it receives to the
target buffer through v, which the IOMMU translates to p.

(5)
hand p

software
stack

device
driver IOTLB

(1)
unmap p=>v

(4)
 v

(2) IOVA
allocator

IOMMU
driver

page table
unmap v=>p hierarchy

Figure 6. After the DMA completes, the I/O device driver
unmaps v and passes p to a higher-level software layer.

walks the page table if the v⇒p translation is missing (6),
and redirects the received data to p (7).

Figure 6 shows the actions the device driver carries out
after the DMA operation is completed. The device driver asks
the IOMMU driver to unmap the IOVA v (1). In response,

IOMMU driver then inserts the v⇒p translation to the page
table hierarchy of the I/O device (4), and it returns v to the
device driver (5). Finally, when updating the corresponding
ring descriptor, the device driver uses v as the address for the
target buffer of the associated DMA operation (6).

Assume that the latter is a receive DMA. Figure 5 details
the activity taking ce when the I/O device gets the data.
The device reads the DMA descriptor through its head register.
The address held by the head is an IOVA, so it is intercepted
by the IOMMU (1). The IOMMU consults its IOTLB to find
a translation for the head IOVA. If the translation is missing,
the IOMMU walks the page table hierarchy of the device
to resolve the miss (2). Equipped with the head’s physical
address, the IOMMU translates the head descriptor for of the
device (3). The head descriptor specifies that v (IOVA defined

above) is the address of the target buffer (4), so the device
writes the received data to v (5). The IOMMU intercepts v,

the IOMMU driver removes the v⇒p map from the page
table hierarchy (2), purges the map from the IOTLB (3),
and deallocates v (4). (The order of these actions is important.)
Once the I/O device can no longer access p, it is safe for the
device driver to hand the buffer to higher levels in the software
stack for further processing (5).

3.2 Protection Modes and Measured Overhead

We experimentally fy the overhead components of the
map and unmap functions—outlined in Figures 4 and 6—of
the IOMMU driver. To this end, we execute the standar -
perf TCP stream ben ark, which attempts to ize
network throughput between two machines over a TCP con-
nection. (The experimental setup is detailed in §5.)

358

 function component strict strict+ defer defer+ for performance. Instead of invalidating entri ght away,
the IOMMU driver queues the invalidations until 250 d
IOVAs accumulate. It then processes all of them in bulk by
invalidating the entire IOTLB. This approach affects the cost
of (un)map in two ways, as shown in Table 1 in the defer
and defer+ columns. (Defer+ is to defer what strict+ is to

strict.) First, as intended, i iminates the cost of invalidating
individual IOTLB entries. And second, it reduces the cost of
IOVA allocation in the baseline deferred mode as compared
to strict (1,674 vs. 3,986), because deallocating IOVAs in
bulk reduces somewhat the aforementioned linear pathology.
The drawback of deferred protection is that the I/O device

might erroneously access target buffers through stale IOTLB
entries after the buffers have already been handed back to
higher software stack levels (Step 5 in Figure 6). Notably, at

this point, the buffers could be (re)used for other purposes.

3.3 Performance Model

Let C denote the average number of CPU cycles required
to process one packet. Figure 7 shows C for each of the
aforementioned IOMMU modes in our experimental setup.
The bottommost horizontal grid line shows Cnone, which is
C when the IOMMU is turned off. We can see, for example,
that Cstrict is nearly 10x higher than Cnone.

Our experimental setup employs a NIC that uses two
target buffers per packet: one for the header and one for the
data. Each packet thus requires two map and two unmap
invocations. So the processing of the packet ludes: two
IOVA (de)allocations; two page table insertions and deletions;
and two invalidations of IOTLB entries. The corresponding
aggregated cycles are respectively depicted as the three top
stacked sub-bars in the figure. The bottom, “other” sub-bar
embodies all the rest of the packet processing activity, notably
TCP/IP and interrupt processing. As noted, the deferred
modes eliminate the IOTLB invalidation overhead, and the
“+” modes reduce the overhead of IOVA (de)allocation. But
even Cde f er+ (the most performant mode, which introduces a
vulnerability window) is still over 3.3x higher than Cnone.

We find that the way the value of C affects the overall
throughput o perf is simple and intuitive. Specifically,
if S denotes the cycles-per-second clock speed of the core,
then S/C is the number of packets the core can handle per
second. And s e every Ethe packet carries 1,500 bytes,

the throughput of the system in Gbps should be Gbps(C) =
S

map iova alloc
page table
other
sum

iova find
iova
page table
iotlb inv
other
sum

3986
588

44
4618

249
159
438

2127
26

2999

92
590

45
727

418
62

427
2135

25
3067

1674
533

44
2251

263
189
471

9
205

1137

108
577

42
727

454
57

504
9

216
1240

unmap

Table 1. Average cycles breakdown of the (un)map func-
tions of the IOMMU driver for different protection modes.

Strict Protection We begin by profiling the Linux kernel in
its safer IOMMU mode, denoted strict, which strictly follows
the map/unmap procedures described in §3.1. Table 1 shows
the average duration of the components of these procedures in
cycles. The strict/map breakdown indicates that its most
costly component is, surprisingly, IOVA allocation (Step 3
in Figure 4). Upon further investigation, we found that the
reason for this high cost is a nontrivial pathology in the Linux
IOVA allocator that regularly causes some allocations to be
linear in the number of currently allocated IOVAs. We were
able to come up with a more efficient IOVA allocator, which
consistently allocates/ s onstant time [37]. We denote
this optimized IOMMU mode—which is quicker than strict
but equivalent to it in terms of safety—as strict+. Table 1
shows that strict+ indeed reduces the allocation time from
nearly 4,000 cycles to less than 100.

The remaining dominant strict(+)/map overhead is the
insertion of the IOVA to the IOMMU page table (Step 4 in
Figure 4). The 500+ cycles of the insertion are due to
explicit memory barriers and cacheline flushes that the driver
performs when updating the hierarchy. Flushes are required,
as the I/O page walk is oherent with the CPU caches on
our system. (This is common nowadays; In started ship
servers with coherent I/O page walks only recently.)

Focusing on the unmap components of strict/strict+, we
see that finding the unmapped IOVA in the allocator’s data
structure is costlier in strict+ mode. The reason: like the
baseline strict, strict+ utilizes a red-black tree to hold the
IOVAs. But the strict+ tree is fuller, so the logarithmic search
is longer. Conversely strict+/ (Step 4 in Figure 6) is done

onstant time, rather than logarithmic, so it is quicker.
The other unmap components are: removing the IOVA from
the page tables (Step 2 in Figure 6) and the IOTLB (Step
3). The removal takes 400+ cycles, which is comparable to
the duration of insertion. IOTLB invalidation is by far the
slowest unmap component at around 2,000 cycles; this result is
consistent with previous work [4, 53].

Deferred Protection In order to reduce the high cost of
invalidating IOTLB entries, the Linux deferred protection
mode relaxes strictness somewhat, trading off some safety

1500 byte × 8 bit × , assuming S is given in GHz. Figure C
8 shows that this simple model (thick line) is accurate. It
co ides with the throughput obtained when systematically
lengthening Cnone using a carefully controlled busy-wait loop
(thin line). It also co ides with the throughput measured
under the different IOMMU modes (cross points).

Consequences As our model is accurate, we conclude that
the translation activity carried out by the IOMMU (as de-
picted in Figure 5) does not affect the performance of the
system, even when servicing demanding ben arks like

359

以上内容仅为本文档的试下载部分，为可阅读页数的一半内容。如

要下载或阅读全文，请访问：https://d.book118.com/33800111702

5006027

https://d.book118.com/338001117025006027
https://d.book118.com/338001117025006027

