

Preface

If you happen to stumble into the w ge of this book, I assume you know something about

Rack, at least you should heard the name before. Rack is a specification which define a unified

interfac ween the web server and your application, so for an application, if it conforms the

Rack spec, it can run in different web servers without modification. A lot of web frameworks

have support for Rack, luding Rails and Sinatra. In addition to be a spec, Rack is also a

rubygem. Although the interface is very simple, you can add a lot of different features by creating

middleware, and the Rack gem already ludes a lot of them. In this book I’ll introduce the Rack

specification in detail and invite you to walk through the source code of Rack gem with me. And

also I’ll show you how Rails is organizing its middleware and how to customize the behavior

of your Rails application by adding Rack middleware. After finishing this book you will have a

better understanding of how the web server and application in ct with each other, and also

how the ActionController works in Rails.

This book is divided into following chapters,

Chapter 1 gives a general introduction to the Rack interface, and you will implement a simple

Rack application using a lambda, an object and a method, then hapter 2 we will take a detailed

look at the Rack specification. hapter 3 we will introduce the concept of middleware and also

learn a simple DSL in Rack gem and how to invoke it from the rackup command. hapter 4

and Chapter 5 we will explore the source code of some important middleware in Rack gem, you

will not only learn how to use them but also I’ll walk you through the source code to show you

how they are implemented. Chapter 6 talks about the Rack interface in Rails and how the

middleware in a Rails application is configured, and then hapter 7 I’ll show some examples

to implement some features by creating Rack middleware for Rails application. And in addition, in

the Appendix I’ll show you how to explore the source code of the Rack rubygem.

Target reader

I assume you are a Rails developer who have a basic knowledge of Ruby and Rails, you should

know what’s a block and what’s a lambda, and also you know the structure of a Rails application.

But when we explore the Rack and Rails source code, if we meet some uncommon syntax of Ruby,

such as parallel assignment, underscore variable, I’ll ex in it in the text. If you are new to ruby, I

recommend you read Programming Ruby 1.9 & 2.0: The Pragmatic Programmers’ Guide by Dave

Thomas, Andy Hunt and Chad Fowler, which is published by Pragmatic Bookshelf. For learning

Rails, Agile Web Development with Rails 4 by Sam Ruby, Dave Thomas and David Heinemeier

Hansson is a good start point. However, previous knowledge of Rack is not required. That being

said, if you just want to look cool by buying a niche book, you are very welcome :)

2 Preface

Rubygem version

All examples in this book are tested in ruby 2.0. And also s e Rack is a spec, the interface should

be consistent across different versions. However this book shows a lot of source code from some

rubygems, in such case the implementation may be different if you look into other version.The

following list shows the version of the rubygems which are discussed in this book.

• Rack: 1.5

• Ruby on Rails: 4.0

Conventions

In the text if I want to emphasize something, for example a method, it will be emphatic. If I want

to run some script from a console, the text will be monospaced, the command line is prefixed

with prompt $ and what the user typed will be bold, like following,

$ irb

2.0.0-p353 :001 > 3.times { puts " o Rack" }

o

o

o

=> 3

Rack

Rack

Rack

2.0.0-p353 :002 >

Ok, enough talking, let’s start exploring the world of Rack now!

Chapter 1 Introduction to Rack

Why Rack

Rack is a specification which defines a minimal, modular and pluggable interface for develop

web applications in Ruby. According to the author of Rack Christian Neukirchen¹, “…I noticed

that there is a lot of code duplication among frameworks s e they essentially all do the same

things. And still, every Ruby web framework developer is writing his own handlers for every

webserver he wants to use. Hopefully, the framework users are satisfied with that choice. …Rack

aims to provide a minimal API for connecting web servers and web frameworks.”. Think about

without Rack, if you create a web framework, you need to create a handler for each web server,

however, if your web framework conforms to the Rack interface, it supports all web servers

which has a Rack Handler. And as you can guess, Rack already ludes a set of handlers for

different web servers:

•

•

•

•

•

•

•

•

•

Mongrel

EventedMongrel

SwiftipliedMongrel

WEBrick

FCGI

CGI

SCGI

LiteSpeed

Thin

And the following web servers lude Rack handlers in their distributions:

•

•

•

•

•

•

•

•

•

•

•

Ebb

Fuzed

Glassfish v3

Phusion Passenger (which is mod_rack for Apache and for nginx)

Puma

Rainbows!

Reel

Unicorn

unixrack

uWSGI

Zbatery

4 Chapter 1 Introduction to Rack

Rack is not just a specification, it’s also an implementation. There is a Rack rubygem which

already ludes a lot of middleware which provide support for functionalities that each

framework needs, such as HTTP request parsing, session management etc. So if you create a

new framework, you don’t need to reinvent the wheel and can put the focus on more interesting

part. If a web framework conforms the Rack interface, then it can run in all handlers without

modification. Now the following frameworks already lude a Rack adapter:

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Cam

Coset

Espresso

Halcyon

Mack

Maveric

Merb

Racktools::SimpleApplication

Ramaze

Ruby on Rails

Rum

Sinatra

Sin

Vintage

Waves

Wee

… and many others.

Between the server handler and the framework, Rack can be customized to your applications

needs using middleware. For example, the Rack rubygem already ludes a set of middleware:

•

•

•

Rack::URLMap, to route to multiple applications inside the same process.

Rack::CommonLogger, for creating Apache-style logfiles.

Rack::ShowException, for catching unhandled exceptions and presenting them in a nice

and helpful way with clickable backtrace.

Rack::ContentLength, for set a ‘Content-Length’ header to the response if one doesn’t exist.

…many others!

•

•

So suppose you create a Rack middleware, it can be reused in different web frameworks. For

example, if you create an authentication middleware (one already exists²!), it can be used in both

Rails and Sinatra applications.

5 Chapter 1 Introduction to Rack

Why learning Rack

As a RoR or Sinatra web developper, you may be wondering why you need to learn Rack, s e

normally it’s hidden behind the web framework and you may not work with Rack in day-to-

day development. However, by learning Rack, you can understand more deeply how your web

framework works and in cts with the web server. And also sometimes you have to create

middleware for some tasks that can’t be done in the web framework. For example, for a RoR

controller which accepts and returns JSON, you want to return a meaningful response if the

 sends an invalid JSON string, you can’t t in RoR, as before the request reaches the RoR

controller the parsing already occured, in such case you have to create a middleware for that.

And in addition to that, by learning Rack you c so learn a lot of things about HTTP, and it’s

also fun. I have spent several months ng the research on Rack and Rails source code, and I

must say I have learnt a lot from it.

Install Rack

Now let’s do some experiments on Rack. I assume you already installed Ruby, and s e Rack is

implemented as a ruby gem, you just type the following command to install Rack,

$ gem install rack

After installation you can execute following command to check if rack is installed successfully,

your version may be different if you installed another version.

$ rackup -v

Rack 1.2 (Release: 1.5)

A simple example

The Rack is a very simple specification which fills only on 2 or 3 A4 pages. According to the

spec, A Rack application is a Ruby object (not a class) that responds to +call+. It take actly

one argument, the environment and returns an Array of exactly three values:

•

•

•

the status,

the headers,

the body.

S e a Rack application is a Ruby object (not a class) that responds to call, so this object can be

any of the following options, * A lambda or Proc object * Any object that defines a call method

* A method object

6 Chapter 1 Introduction to Rack

Implement Rack application using lambda

A lambda or Proc is an object which encapsulate a piece of code, and later you can invoke call

to execute it. Let’s create a simple Rack application by using a lambda object in irb. Firstly let’s

fire up irb,

$ irb

2.0.0-p353 :001 >

You can type ruby code after the prompt ‘>’ and irb will interprete it directly. So let’s create a

lambda by ty following code,

2.0.0-p353 :001 > l = lambda { |env| [200, { 'Content-Type' => 'text/ in' },

[" o from a lambda"]] }

=> #<Proc:0x007fe1a19a5058@(irb):1 (lambda)>

In the above code, we create a lambda which accepts a env parameter, and returns an array

which has 3 values. The first is an integer 200, which represents the HTTP status code OK, the

second element is a hash instance, and it contains one entry, the key is ‘Content-Type’ string, and

value is ‘text/ in’, which ls the browser that it should render the body as in text instead

of HTML. And the third value is an array, which contains a string object. This is the body of the

response, and according to the Rack spec, the body should respond to ea ethod, and each

element should yield a string. So here we use an array object wich contains String objects. After

we create the lambda object we assign it to a local variable l.

Now lets run this lambda by using the WEBrick handler (in later chapters we will see how to

run Rack application by using the rackup command), but before that we should require the Rack

rubygem in our system,

2.0.0-p353 :002 > require 'rack'

=> true

The response true ls us that the Rack gem is loaded successfully, now let’s run this lambda

using the WEBrick handler by calling Rack::Handler::WEBrick#run class method,

2.0.0-p353 :005 > Rack::Handler::WEBrick.run l, Port: 3000

[2014-02-01

[2014-02-01

[2014-02-01

[2014-02-01

21:59:28]

21:59:28]

21:59:28]

21:59:28]

INFO

INFO

WARN

INFO

WEBrick 1.3.1

ruby 2.0.0 (2013-11-22) [x86_64-darwin13.0.2]

TCPServer Error: Address already in use - bind(2)

WEBrick::HTTPServer#start: pid=3368 port=3000

The Rack rubygem already ludes a set of handlers and WEBrick is one of them, and all Rack

inherent handlers are in Rack::Handler module. Normally a handler will have a run class method,

and it accepts two parameters, the first is the rack object, here we pass the local variable l,

which points to the lambda we just defined, and the second parameter normally is a hash which

you can pass options, here we pass the Port: 3000 to change the WEBrick server port to 3000,

otherwise by default it’s 8080. After the WEBrick is started we can access our web app by ty

 in our favorite browser.

7 Chapter 1 Introduction to Rack

A Rack application using lambda

We can see that in the browser it dis ys the string we specified in the body array: “ o from

a lambda”.

Implement Rack application using an object

Now let’s try implement a Rack application using an object. Firstly lets stop the WEBrick server by

ty ‘Ctrl+C’, it will print some stack trace to say that it was interrupted, but we can ignore it.

Now we create a class App which has the instance method call,

2.0.0-p353 :005 > class App

2.0.0-p353 :006?> def call(env)

2.0.0-p353 :007?> [200, { 'Content-Type' => 'text/ in' }, [" o from an object"]]

2.0.0-p353 :008?> end

2.0.0-p353 :009?> end

=> nil

we create a class App inside which we define an instance method call. According to the Rack

specification, it accepts an env parameter, and returns an array which has 3 values. The content

of the array is almost the same as the lambda, but in the las ement, we specifiy the content as

“ o from an object”, now let’s start the WEBrick by ty the following command,

2.0.0-p353 :010 > Rack::Handler::WEBrick.run App.new, Port: 3000

[2014-02-01

[2014-02-01

[2014-02-01

[2014-02-01

22:58:17]

22:58:17]

22:58:17]

22:58:17]

INFO

INFO

WARN

INFO

WEBrick 1.3.1

ruby 2.0.0 (2013-11-22) [x86_64-darwin13.0.2]

TCPServer Error: Address already in use - bind(2)

WEBrick::HTTPServer#start: pid=3453 port=3000

S e in Rack specification, a Rack application should be an object, not a class which responds

to the call method, we created an instance of app and passed it as the first parameter of WE-

Brick#run by calling App.new. Now we can refresh our browser to access

again, and it should dis y the page as the following figure, we can see that now the content is

changed to “ o from an object”.

8 Chapter 1 Introduction to Rack

A Rack application using object

Implement the Rack application using a method

In Object class there is a method method, and you can call this method and pass a symbol or

string which is the metho me, and then the method will return a Method object. And later

you can invoke the ‘call’ on the method object and pass the parameters that the original method

accepts, which is like calling the original method directly. So this time we try to implement a Rack

application by using a method object. Firstly let’s stop the WEBrick server by ty ‘Ctrl+C’

again, and then create a new class App2 as following,

2.0.0-p353

2.0.0-p353

2.0.0-p353

2.0.0-p353

2.0.0-p353

=> nil

:012 > class App2

:013?> def render env

:014?> [200, {'Content-Type' => 'text/ in'}, [" o from a method"]]

:015?> end

:016?> end

Here we defined another class App2, and instead of defining a call method, we create a method

named render, it also accepts an env parameter, and returns an array which has 3 elements. In

the last array element, we specify the string value as “ o from a method”.

Now lets try to create an instance of App2 and call method on that object and pass :render to get

the method object which points to render method,

2.0.0-p353 :018 > m = App2.new.method(:render)

=> #<Method: App2#render>

We can see that it returns an instance of Method object, and now we start the WEBrick server

again pass this method object,

2.0.0-p353 :010 > Rack::Handler::WEBrick.run m, Port: 3000

[2014-02-01

[2014-02-01

[2014-02-01

[2014-02-01

23:20:02]

23:20:02]

23:20:02]

23:20:02]

INFO

INFO

WARN

INFO

WEBrick 1.3.1

ruby 2.0.0 (2013-11-22) [x86_64-darwin13.0.2]

TCPServer Error: Address already in use - bind(2)

WEBrick::HTTPServer#start: pid=3598 port=3000

Now when we refresh our browser again, we can see that now it dis ys “ o from a method”,

as we expected.

9 Chapter 1 Introduction to Rack

A Rack application using method

Summary

You see, a Rack application is that simple, right? In this chapter we gave a gentle introduction

to the Rack interface, which is just the call method and its signature, and then we implement a

Rack application by using a lambda, an object and a method. In next chapter we will have a

detail look at the Rack specification. Don’t worry, as I said the Rack specification is only 2 or 3

A4 pages, so it’s not that difficult.

Chapter 2 Rack Specification

In last chapter we had an overlook at the Rack interface, so in this chapter we will have a detailed

look at the Rack specification. The specification can be viewed at the Rack website³. If a web

framework or application conforms to the spec, then it can run without modification under all

web servers which have a Rack handler. Let’s repeat the requirements of Rack application here,

A Rack application is a Ruby object (not a class) that responds to call method. It take actly

one argument, the environment and returns an Array of exactly three values which represents

the HTTP response:

•

•

•

the status,

the headers,

the body.

Now let’s have a detailed look at the environment and the response.

The Environment

The environment must be an instance of Hash that ludes CGI-like headers. And also the

application is to modifiy the environment.

CGI and FastCGI
CGI (Common Gateway Interface) is a protocl for web servers to interfacing with external

applications. CGI applications run in separate processes, which are created at the start of each

request and torn down at . When the web server creates the process, it will pass a set of

environment variables to the CGI program, for example, the server specific variable SERVER_-

NAME which denotes the hostname of the server, and request specific parameter REQUEST_-

METHOD which is the method of the HTTP request. The CGI program then get the variables

from i vironment and execute its logic. CGI programs can be implemented by interpreted

languages such as Perl or compiled languages such as C/C++.

FastCGI is a variation of CGI protocol, which aims to reduce the overhead of creating processes.

Instead of creating a new process for each request, FastCGI uses persistent processes to handle a

series of requests. More details can be got from Wikipedia . So for Rack environment it’s a

Hash object which contains headers like the CGI environment variables.

11 Chapter 2 Rack Specification

Now let’s try to create a Rack application which dis ys all variables in the environment hash.

This time we don’t use irb, instead we create a file named print_env.rb which has following

content,

A Rack application which prints the env hash

require 'rack' 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

class PrintEnv

def call(env)

body = []

env.sort_by {|key, value| key }.each do |key, value|

body << "#{key} : #{value} \n"

end

[200, {'Content-Type' => 'text/ in'}, body]

end

end

Rack::Handler::WEBrick.run PrintEnv.new, Port: 3000

In the script on line 1 firstly we require the Rack rubygem s e the WEBrick handler is inside

this gem. And then we create a class PrintEnv. In this class we define an instance method call,

s e this method conforms the Rack spec, it accepts a single parameter env. In this method on

line 6, we initialize a local variable body which is an empty array. And then to make it easier to

check the variables in the environment, we firstly call env.sort_by {|key, value| key } to sort by

the vairable names. Then we i te the hash using its ea ethod. In the block of ea ethod, we

initialize a string which prints the content of the key and value and then appends the string to

the body array. And lastly we return an array which contains 3 elements, the 200 HTTP status

code, a hash which contains a header of ‘Content-Type’, and the body. And on line 15 we run

the Rack application by calling Rack::Handler::WEBrick.run method and set the port to 3000.

Now let’s run the script. In the console change to the folder where this script resides, and then

run it using following command,

$ ruby print_env.rb

[2014-02-18

[2014-02-18

[2014-02-18

[2014-02-18

21:58:45]

21:58:45]

21:58:45]

21:58:45]

INFO

INFO

WARN

INFO

WEBrick 1.3.1

ruby 2.0.0 (2013-11-22) [x86_64-darwin13.0.2]

TCPServer Error: Address already in use - bind(2)

WEBrick::HTTPServer#start: pid=31475 port=3000

Now in our favorite browser we type , and the page is like the following

figure,

12 Chapter 2 Rack Specification

A Rack application which prints all variables in env

We can see that in the environment there is already a set of variables, which is actually populated

by our WEBrick handler:

•

•

•

a set of CGI like variables such as REQUEST_PATH, SERVER_NAME, SERVER_PORT

all HTTP headers sent by the

a set of ‘rack.*’ variables

We will give an ex nation of these variables later. Now let’s focus on some important variables

for developers, the PATH_INFO and QUERY_STRING. If the browser accesses ,

the value of PATH_INFO is ‘/’ and the QUERY_STRING is an empty string. Now we type

, we can see that the PATH_INFO now changes to

‘path’, and the QUERY_STRING is now ‘param1=value1’ which is after the question mark ‘?’.

When the server handler receives the HTTP request, it will parse the URL and set different parts

to different variables in the environment like the following figure,

HTTP path and parameters are decomposed in different vairables

And then let’s look at the headers, when the browser sends a HTTP request to the server, it

could lude a set of HTTP headers. If you use Chrome, you can view the HTTP requests and

responses by using the Chrome Developer Tools (You can use Firebug plugin if you use Firefox).

And as the following figure, we can see that the Rack handler maps the HTTP headers to a set

of variables prefixed with HTTP_. And also all header names are transformed to upper case and

the dash in the names is transformed to underscore.

13 Chapter 2 Rack Specification

HTTP headers are transformed to variables starting with HEADER_

Now let’s see what the specification is saying. In the Rack specification, the environment is

required to lude the following variables,

Variable name Variable meaning

REQUEST_METHOD The HTTP request method, such as “GET”

or “POST”. This cannot ever be an empty

string, and so is always required.

The initial portion of the request URL’s

“path” that corresponds to the application

object, so that the application knows its

virtual “location”. This may be an empty

string, if the application corresponds to the

“root” of the server.

The remainder of the request URL’s “path”,

designating the virtual “location” of the

request’s target within the application. This

may be an empty string, if the request URL

targets the application root and does not

have a trailing slash. This value may be

percent-encoded when originating from a

URL.

The portion of the request URL that follows

the ‘?’, if any. May be empty, but is always

required!

SCRIPT_NAME

PATH_INFO

QUERY_STRING

14 Chapter 2 Rack Specification

Variable name Variable meaning

SERVER_NAME, SERVER_PORT When combined with SCRIPT_NAME and

PATH_INFO, these variables can be used to

complete the URL. Note, however, that

HTTP_HOST, if present, should be used in

preference to SERVER_NAME for

reconstructing the request URL.

SERVER_NAME and SERVER_PORT can

never be empty strings, and so are always

required.

Variables corresponding to the

- d HTTP request headers. The

presence or absence of these variables

should correspond with the presence or

absence of the appropriate HTTP header in

the request. See RFC3875 section 4.1.18⁴ for

specific behavior

HTTP_* Variables

In addition to this, the Rack environment must lude the following Rack-specific variables, all

variables have a rack. prefix.

Variable name Variable meaning

rack.version The Array representing this version of Rack. See

Rack::VERSION, that corresponds to the version of this

SPEC.

http or https, depending on the request URL.

See the input stream section below

See the rack.errors section below

true if the application object may be simultaneously invoked

by another thread in the same process, false otherwise.

true if an equivalent application object may be

simultaneously invoked by another process, false otherwise.

true if the server expects (but does not guarantee!) that the

application will only be invoked this ime during the life

of its containing process. Normally, this will only be true for

a server based on CGI (or something similar).

rack.url_scheme

rack.input

rack.errors

rack.multithread

rack.multiprocess

rack.run_once

the input stream

The vairable rack.input is an input stream. The input stream is an IO-like object which contains

the raw HTTP POST data. The input stream must respond to 4 methods: gets, read, each and

rewind.

⁴

15 Chapter 2 Rack Specification

The input stream doesn’t have to be an IO object, but the above four methods should respect

the semantic of the ones in IO class. You can check the ation of these methods on

ruby-doc.org⁵, so I won’t repeat it here.

In Rack rubygem, there is a class Rack::Request, which wraps the env and provides a convinient

interface for accessing variables in the env. We will have a detailed look at this class later. But

now let’s focus on its POST method, this method parses the POST data and return all parameters

within.

Rack::Request#POST shows how to use rack.input variable

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

module Rack

class Request

def initialize(env)

@env = env

end

def POST

if @env["rack.input"].nil?

raise "Missing rack.input"

elsif @env["rack.request.form_input"].eql? @env["rack.input"]

@env["rack.request.form_hash"]

elsif form_data? || parseable_data?

@env["rack.request.form_input"] = @env["rack.input"]

unless @env["rack.request.form_hash"] = parse_multipart(env)

form_vars = @env["rack.input"].read

@env["rack.request.form_vars"] = form_vars

@env["rack.request.form_hash"] = parse_query(form_vars)

@env["rack.input"].rewind

end

@env["rack.request.form_hash"]

else

{}

end

end

end

end

The initialize method accepts the env param and set it as an instance variable @env, so later we

could access the environment inside the class. Then let’s digest the POST method little by little.

On line 8 it firstly check that if the rack.input variable is set, if not, it throws an exception s e

this variable is mandatory in specification. Then on line 10 it checks if the rack.request.form_-

input variable is equal to rack.input variable, if yes, it means that the POST data is already

⁵

16 Chapter 2 Rack Specification

parsed and stored in rack.request.form_hash variable, so we just return that variable directly. If

the rack.request.form_input is not equal to rack.input variable, it means we don’t parse the form

data yet, so on line 12 if there is form data and it’s parseable, it will first try to parse the HTTP

request as multipart by calling parse_multipart, if the request is not multipart, this method will

return nil. Then the real work on rack.input begins. On line 15, it calls @env[“rack.input”].read

and return the read content to the local variable form_vars. According to the ruby doc⁶, if the

read method has no arguments, it will read all content from the input stream until it reaches

EOF, so the form_vars variable contains all form data as a string. And then on line 17 it sets

the form_vars to the variable rack.request.form_vars in the environment. And then it calls the

method parse_query to parse the form data into a hash structure and set the hash to the variable

rack.request.form_hash in the environment. Then on line 20 it calls @env[“rack.input”].rewind to

reset the current read position to the beginning of the input stream, so later the input stream

could be read again. And lastly on line 22 it returns the already parsed rack.request.form_hash

variable.

The Error stream

The rack.errors variable points to an output stream which is to output error messages during

the processing of the request. It must respond to puts, write and flush methods. In the Rack

specification it defines the following rules,

•

•

•

puts must be called with a single argument that responds to to_s.

write must be called with a single argument that is a String.

flush must be called without arguments and must be called in order to make the error

appear for sure.

close must never be called on the error stream. •

In Rack rubygem there is a middleware called Rack::ShowExceptions which catches all exceptions

raised from the app it wraps, then it outputs the backtrace to the error stream. We will introduce

what’s middleware in next chapter but now let’s just see how to use the rack.errors variable.

Rack::ShowExceptions shows how to use the rack.errors to output backtrace

module Rack

class ShowExceptions

1

2

3

4

5

6

7

8

9

10

11

def call(env)

@app.call(env)

rescue StandardError, LoadError, SyntaxError => e

exception_string = dump_exception(e)

env["rack.errors"].put ception_string)

env["rack.errors"].flush

⁶

以上内容仅为本文档的试下载部分，为可阅读页数的一半内容。如

要下载或阅读全文，请访问：https://d.book118.com/31806703604

7006042

https://d.book118.com/318067036047006042
https://d.book118.com/318067036047006042

