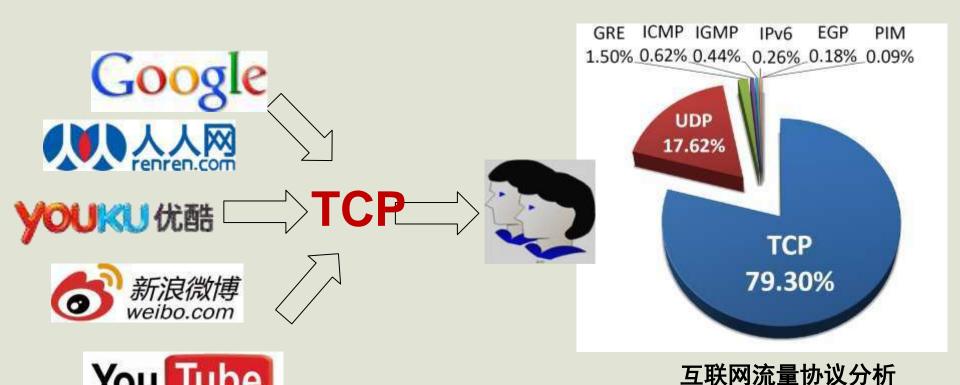
Congestion

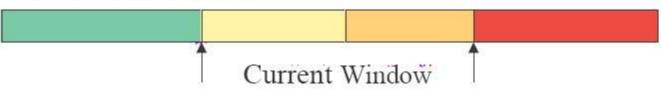
- Total offered load exceeds what network can handle.
- Congestion collapse:
 - When congestion occurs, packets get dropped.
 - Due to packet loss, packets get retransmitted.
 - Congestion gets worse and worse!
 - "Snow ball" effect.

Congestion Control


- Why do it at the transport layer?
 - Real fix to congestion is to slow down sender.
- How to?
 - Use law of "conservation of packets".
 - Keep number of packets in the network constant.
 - Don't inject new packet until old one leaves.
- What is the congestion indicator?
 - packet loss.

Congestion Control

- Interprets packet loss as an indicator of congestion
 - When it senses packet loss, it slows down the rate of packet transmission
 - When packets are received correctly, sends packets faster
 - Still within the limits of the sliding window


TCP Congestion Control

- ➤TCP协议的重要性
 - 互联网中近80%的数据流量由TCP协议进行传输

TCP Congestion Window

- Data already sent and acknowledged
- Data already sent but not yet acknowledged
- Data permitted to send
- Data not permitted to send

TCP Congestion Control

• 确保各流享用带宽的公平性。

• 动态发现当前可利用的带宽。

• 拥塞避免及控制机制以避免拥塞崩溃 (congestion collapse)的发生。

TCP Congestion Control

- 3 phases
 - Slow-start
 - Probing for initial congestion level.
 - Congestion Avoidance
 - Additive Increase, Multiplicative Decrease
 - Fast Retransmission/Recovery
 - Optimizations

Slow-Start

- 当建立新的TCP连接时,拥塞窗口 (congestion window, cwnd) 初始化为 一个数据包大小。
- 源端按cwnd大小发送数据,每收到一个ACK确认,cwnd就增加一个数据包发送量
- cwnd就将随着回路响应时间(Round Trip Time, RTT)呈指数增长,源端向网络发 送的数据量将急剧增加。

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/24605412405
4010101