Cautions on Safety

Make sure to read the manuals and pay careful attention to safety when designing a system. In practice, pay attention to the following contents and handle any products or demonstration units correctly.

Cautions on practice

DANGER

- Never touch any terminal while the power is supplied. If you touch a terminal, you may get an electrical shock.
- Turn off the power before connecting / disconnecting units, or opening any safety covers.
- Never insert your hand or any other object into a moving part.

CAUTION

- Never change the wiring or configuration of demonstration euipment without permission or if you are unsure of how to configure a system correctly. Such actions may cause fail ction, injury or fire.
- If a simulation unit (such as an X-Y table) generates an abnormal smell or sound, immediately turn off the power switch.
- If you detect any abnormality, immediately turn off the power and contact a qualified engineer.

Positioning Control

Manual number : JY992D89901

Manual revision: A

Date : July 2000

FAX BACK

Mitsubishi has a world wide reputation for its efforts in continually developing and pushing back the frontiers of industrial automation. What is sometimes overlooked by the user is the care and attention to detail that is taken with the documentation. However,to continue this process of improvement, the comments of the Mitsubishi users are always welcomed. This page has been designed for you,the reader,to fill in your comments and fax them back to us. We look for-ward to hearing from you.

Fax numbers:		Your name								
Mitsubishi Electric										
America (01) Australia (02) 638-7072 Germany (0 21 02) 4 86-1 12		Your company Your location:								
						South Africa (0 27) 11 444-0223				
						United Kingdom	(01707) 278-695			
Please tick the box	x of your choice									
What condition did	I the manual arrive in?	Good	Minor damage	Unusable						
Will you be using a	a folder to store the manual?	Yes	No							
What do you think	to the manual pres	Tidy	Un-friendly							
Are the explanatio	ns understandable?	Yes	Not too bad	Unusable						
•	was most difficult to understa									
	rams which are not clear?	Yes	No							
•	to the manual layout?	Good		•						
	ou would like to see improve									
Could you find the ble please identify	information you required eas your experience:	ily using th	he index and/or the c	ontents,if possi						
	comments in general about th									
Thank you for taking and this manual earth	ng the time to fill out this ques	stionnaire.	We hope you found I	ooth the produc						

Introduction

This manual describes basic operation for those who learn positioning control for the first time, the aim being so that they can get training using demonstration units of Mitsubishi FA equipment.

The following relevant manuals are available and should be referred to

Manual Na me	Number
FX-10GM/FX(E)-20GM Hardware and Programming manual	JY992D60401
FX-10GM Users Guide	JY992D68401
FX2N-10GM/FX2N-20GM Hardware and Programming manual	JY992D77801
FX2N-10GM Users Guide	JY992D77701
FX2N-20GM Users Guide	JY992D77601
FX-PCS-VPS Win-E Software Manual	JY992D86801
FX2N-10GM/FX2N-20GM Connection Manual	JY992D81601

1. The World of Positioning Control	1-1
1.1 Welcome to the new world!	
1.2 Diversified actuators	
1.3 Positioning method type	
2. Positioning by AC Servo System	2-1
2.1 When an AC servo system is introduced	
2.2 Examples of AC servo systems	
3. Components of Positioning Control and Their Roles	3-1
3.1 Positioning controller	
3.1.1 Command pulse and feed quantity	3-4
3.1.2 Command pulse and feed speed	3-4
3.1.3 Setting the acceleration/deceleration time	
3.1.4 Backlash correction function	
3.1.5 Zero point return function	
3.2 Servo amplifier and servo motor	
3.2.1 Positioning control in accordance with command pulse	
3.2.2 Deviation counter function	
3.2.3 Servo lock function	
3.2.5 Dynamic brake function	
3.3 Drive mechanism	
3.3.1 Concept of drive system movement quantity	
3.3.2 Setting the target position	
4. Advanced Positioning	4-1
4.1 Interpolation control	
4.2 Other controls	
5. Actual Positioning	5-1
5.1 Demonstration Equipment	
5.1.1 Basic Set	
5.1.2 Comprehensive Set	
5.2 Operation of the demonstration equipment	
5.2.1 Program example	
5.2.2 Writing the program	
5.2.3 Parameters	
5.2.4 Operation	5-7
6. Product Line up	6-1
6.1 Position controller	6-1
6.2 Servo amplifier	6-5
6.3 Servo motor	
Appendix A:	A-1
A-1: Tentative Selection of Motor Capacity	
A-1-1: Motor effective torque	
A-1-2: Load inertia moment	

1	The World of Positioning Control
2	Positioning by AC Servo System
3	Components of Positioning Control and Their Roles
4	Advanced Positioning
5	Actual Positioning
6	Product Line up
Α	Appendix A: Tentative Selection of Motor Capacity

1. The World of Positioning Control

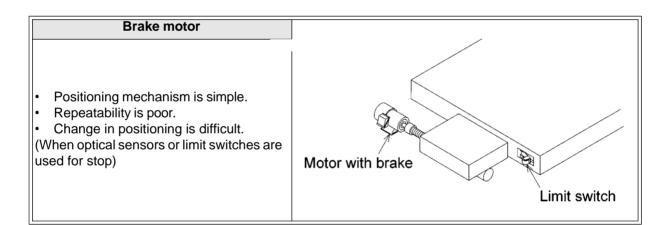
1.1 Welcome to the new world!

The positioning controller, together with the programmable controller, personal computer and operator interface, is one of the four main units of FA (factory automation).

Among them, the positioning controller is important as the basis of FA, and regarded as the center of the mechatronics field in which many senior engineers have been playing active parts.

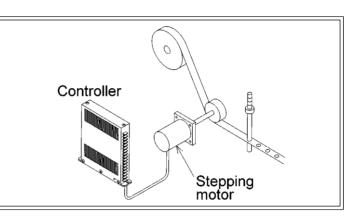
Positioning is all about motion, and motion often involves speed and precision. As speed can be related to productivity, it is an area of much development. But, when the machine speed increases, a problem with the stop precision is often generated. In order to solve this problem, diversified grades of position controllers have been required and developed.

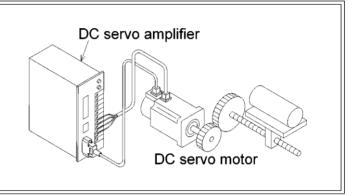
Improvement of the machine efficiency generates immeasurable added value, including reduction of labour and the machine floor area for the same quantity of production.


If there are no problems related to the positioning aspect of a machine, it may mean that the machine is not running most efficiently. Here is where the science of developing an optimum positioning control system comes in.

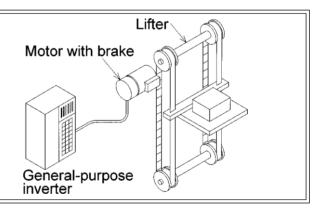
1.2 Diversified actuators

- A power source which moves an element in a system is called actuator. A unit which detects a position of a work piece or moving part is called sensor.
- Diversified actuators and sensors, from simple ones to enhanced ones, are used in positioning.
- This paragraph describes representative types, their features and weak points.

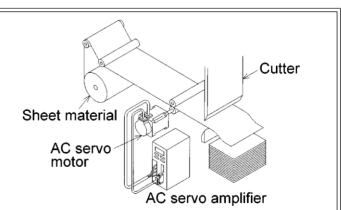

Air source and high grade piping are required. High torque is not available. Multi-point positioning is complex and very difficult to achieve. Change in positioning is difficult. Piping Air cylinder Workpiece Compressor


Stepping motor

- · Positioning mechanism is simple.
- If load is heavy, motor may step out and displacement can occur.
- Motor capacity is small.
- · Precision is poor at high speed.


DC servo system

- Positioning precision is good.
- Maintenance is required for motor brushes.
- It is not suitable for rotation at high speed.

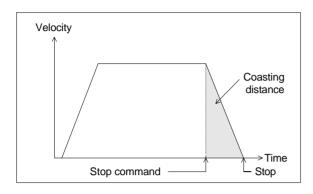

General purpose inverter and gener purpose motor

- Multi-speed positioning is available using high-speed counter.
- High precision positioning is not available.
- Large torque is not available at start. (Specialized inverter is required)

AC servo system

- Precision is good.
- Maintenance is not required.
- Positioning address can be easily changed.
- · It is compact, and offers high power.

1.3 Positioning method type


1) There are three types of positioning method

Control method [Description	Schematic drawing	
Speed control	Limit switch method	Two limit switches are provided in places where a systems moving part passes. At the first limit switch, the motor speed is reduced. At the second limit switch, the motor turns off and the brake turns on, to stop the moving part. In this method, because position controllers are not required, the system configuration can be realized at reasonable cost. (Guideline of stopping precision: Approximately ±1.0 to 5.0 mm)*	Moving part Ball screw Limit switch for changeover to low speed Limit switch for changeover to low speed Limit switch for stop High speed Low speed Limit switch for stop Movement distance B: Brake INV: Inverter	
	Pulse count method	A position detector (such as pulse encoder) is set up in a motor or rotation axis. The pulse number ge from the position detector is counted by a high-speed counter. When the pulse number reaches the preset value, the moving part stops. In this method, because limit switches are not used, the stop position can be easily changed.	Pulses are fed back. Moving part Moving part	
Position control	Pulse command method	An AC servo motor which rotates in proportion to the input pulse number is used as the drive motor. When the pulse number corresponding to the movement distance is input to the servo amplifier of the AC servo motor, positioning can be performed at high speed in proportion to the pulse frequency.	Pulses are fed back. PLG SM Servo amplifier Command pulse PC Position controller Pulse are Moving part Ball screw SM: Ser vo motor PLG: Pulse and Pu	

^{*1} The stop precision shows a value in a case where low speed is 10 to 100 mm/s.

2) Positioning method and stop precision

- Veloc ity

 Speed reduction start

 Tim e delay

 Light load

 Large inertia

 Dispersion
 in stop
 inertia

 Stop command

 Stop

 Stop
- Velocity

 High speed

 Dispersion in speed reduction distance

 Dispersion in stop

 Time

 Speed reduction command

< Limit switch method >

- When automatically stopping a moving part driven by a motor, stop the motor by a position signal, detected by a limit switch (in general conditions, turn on the brake at the same time).
- The moving part continues by a coasting distance until it completely stops, after the stop command is given. The coasting distance is shaded in the figure.
- The stop precision is equivalent to the dispersion in the shaded area as shown in the figure on the left.

The dispersion is affected by the speed when the stop command is given, the load size and the time delay since the stop command is given, until speed reduction actually starts.

- If the required stop precision is not satisfactory when stopping from the normal operation speed, the most effective method to improve the stop precision is to reduce the operation speed.
- However, if the operation speed is simply reduced, the machine efficiency may also be reduced. In actual operation, the motor speed can be reduced from high speed to low speed once, then the motor stopped.

< Pulse count method >

- When a pulse encoder is attached to a moving part, and the motor speed is controlled by a number steps while the pulse number is counted, the movement quantity per pulse is determined in accordance with the relationship between the pulse number generated by one rotation of the encoder, and the movement quantity of the moving part (workpiece) realized by one rotation of the motor. The movement quantity per pulse is regarded as the minimum unit for the stop command.
- However, the coasting distance at stop is not eliminated.

< Pulse command method >

- In this method using a servo system, the weak points described above are improved. A pulse encoder is attached to the servo motor, detecting the motor rotation quantity (workpiece movement distance), to continuously and directly control the speed from the high-speed operation to the target position, which allows the workpiece to stop with good precision.
- As the coasting distance at stop is eliminated, the positioning precision is improved.

1	The World of Positioning Control
2	Positioning by AC Servo System
3	Components of Positioning Control and Their Roles
4	Advanced Positioning
5	Actual Positioning
6	Product Line up
А	Appendix A: Tentative Selection of Motor Capacity

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/14602203323
4010101