Synchronization and stability in networked systems via structured-trigger, and event-trigger and self-trigger principles¹

Wenlian Lu^{1,2}

¹School of Mathematical Sciences, Fudan University

²Centre for Computational System Biology, Fudan University

¹Presented at SWU, 2015/12/29

< □ > Ē

Joint works with

- Prof. Tianping Chen (Fudan)
- Mr. Xinlei Yi (KTH, Sweden)
- Dr. Yujuan Han (MUS)
- Mr. Ren Zheng (Fudan, UTSA/USA)
- Prof. Bo Liu (Xi'Dian)

∢ □ → j = ≣ -

Outlines

Introduction

Multi-agent system networks: Methods

Some results

Conclusion

Outlooks

∢ □ ▶ j ਵ

Event-triggered Control

- A promising method for controlling networked agent systems.
- Better performance than periodic controllers (Åström & Bernhardsson, IEEE CDC 2002).
- Similar performance as continuous controllers but less computation and communication loads (Wang & Lemmon IEEE TAC 2011).
- Implemented by smart control strategies.

<□>, ≣

Event-triggered Control

- A promising method for controlling networked agent systems.
- Better performance than periodic controllers (Åström & Bernhardsson, IEEE CDC 2002).
- Similar performance as continuous controllers but less computation and communication loads (Wang & Lemmon IEEE TAC 2011).
- Implemented by smart control strategies.

$\dot{x} = f(x, u)$

- Discretization: $x(k) = x(t_k)$ and $x(k + 1) = x(k) + \delta_k f(x(k), u(k)).$
- Sampled data control system: $\{y(t_k)\}$.
- Event-trigger: $u(t) = u(t_k), t \in [t_k, t_{k+1})$ with $t_{k+1} = \max\{H(x(t), t_k) \le 0\}$. It can be regarded as an subjective discretization/data sampling strategy.

<□>」 重

$\dot{x} = f(x, u)$

Discretization: $x(k) = x(t_k)$ and $x(k + 1) = x(k) + \delta_k f(x(k), u(k)).$

Sampled data control system: $\{y(t_k)\}$.

Event-trigger: $u(t) = u(t_k), t \in [t_k, t_{k+1})$ with $t_{k+1} = \max\{H(x(t), t_k) \le 0\}$. It can be regarded as an subjective discretization/data sampling strategy.

<□>」 ■

$\dot{x} = f(x, u)$

- Discretization: x(k) = x(t_k) and x(k + 1) = x(k) + δ_kf(x(k), u(k)).
 Sampled data control system: {y(t_k)}.
- Event-trigger: $u(t) = u(t_k)$, $t \in [t_k, t_{k+1})$ with $t_{k+1} = \max\{H(x(t), t_k) \le 0\}$. It can be regarded as an subjective discretization/data sampling strategy.

<□>」 ■

$\dot{x} = f(x, u)$

- Discretization: $x(k) = x(t_k)$ and $x(k + 1) = x(k) + \delta_k f(x(k), u(k)).$
- Sampled data control system: $\{y(t_k)\}$.
- Event-trigger: $u(t) = u(t_k)$, $t \in [t_k, t_{k+1})$ with $t_{k+1} = \max\{H(x(t), t_k) \le 0\}$. It can be regarded as an subjective discretization/data sampling strategy.

Centralized Event-triggered Control

 $\dot{x} = f(x, t, u)$

Piece-wise constant control strategies

 $\mathbf{x}^{'} = f(\mathbf{x}, t, u(t_k)), t \in [t_k, t_{k+1}).$

Choose t_k by a criterion:

 $t_k = \{t : H(x_t) = 0\}.$

Iteration.

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如 要下载或阅读全文,请访问: <u>https://d.book118.com/12523220014</u> <u>1011040</u>