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An Example: Prior Probability 

• One day, Peter shows swine flu symptoms 
He went to see a doctor if he is OK 

• The doctor said, according to past data, 
85% of people was healthy 

Prior Probability 
15% of people was ill 

Prior Probability 
 >

therefore, Peter was healthy 
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An Example: Conditional Probability 

• The problem of using Prior Probability to determine 
our health condition: 

Ignore our present state of health 
• Need to measure some patterns of our physical 

condition 
Example: Measure the amount of red blood cells 
denoted by 
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An Example: Conditional Probability 

• According to the previous knowledge (Conditional 
Probability, also called likelihood): 
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An Example: Posterior Probability 

• Now, we know the following information: 𝑝 𝑖𝑙𝑙 = 0.15 𝑝 ℎ𝑒𝑎𝑙𝑡ℎ𝑦 = 0.85 𝑝 𝑥 = 2|𝑖𝑙𝑙 = 0.67 𝑝 𝑥 = 2|ℎ𝑒𝑎𝑙𝑡ℎ𝑦 = 0.05 
• How can they help the doctor make a decision? 
Bayes Formula 

prior likelihood = 𝑝 𝑥|𝜔 𝑝 𝜔 𝑝 𝜔|𝑥 𝑝 𝑥 
evidence posterior 
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Bayes Rule 

• Bayes Decision Rule: 
 Decide 1if 
 Decide 2if 

• Or equivalent to 

12 21
Decide 1if 
Decide 2if 

12 1 21 21
 2

is ignored s e it is the same for both classes 2 𝑗𝑗=1 𝑗
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𝑝 𝜔|𝑥 = 𝑝 𝑥|𝜔 𝑝 𝜔 𝑝 𝑥  
 

 



 

 

um Likelihood (ML) Rule 

• It is a special case of Bayes Rule 
When 1 2 , the decision is based 
entirely on the likelihood 𝑗

• Decision Rule: 
 Decide 1if 
 Decide 2if 

12 21
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𝑝 𝜔|𝑥 = 𝑝 𝑥|𝜔 𝑝 𝜔 𝑝 𝑥  
 

 



 

 

An Example: Final Decision by Doctor 

• Recall: 



• 



, 

• According to Bayes Decision Rule 
> , 

therefore, Peter was ill. 
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𝑝 𝜔|𝑥 = 𝑝 𝑥|𝜔 𝑝 𝜔 𝑝 𝑥  
 

 



 

 

Decision Boundary 
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Probability of Error 

• There are two possible errors 

• Probability of error is 12 if we decide 2
if we decide 1
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Classification Error 

• Bayes rule or Bayes classifier 
 If 1 2 , decide 1
 Otherwise, decide 2

• Therefore, the classification error is 1 2
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Extension 

• Extend to 
Multi-dimensional  features 

Multi-class problem (3 or more classes) 1 2 𝑐
• Bayes rule or Bayes classifier for multi-class 

problems 
Select 𝑖 if 𝑖 𝑗 for all 
Probability of error for multi-class problems 

1 2 𝑐
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Bayes Error Rate 
• Error = Bayes Error + Added Error 𝑝 𝑒𝑟𝑟𝑜𝑟 = 𝑝 𝑥 ∈ 𝑅2, 𝜔1 = 𝑝 𝑥 ∈ 𝑅2|𝜔1 + 𝑝 𝑥 ∈ 𝑅1, 𝜔2 𝑝 𝜔1 + 𝑝 𝑥 ∈ 𝑅1|𝜔1 𝑝(𝜔2) 𝜔2 𝑑𝑥 =   𝑝 𝑅2 𝑥|𝜔1 𝑝 𝜔1 𝑑𝑥 +   𝑝 𝑅1 𝑥|𝜔2 𝑝 

This is the error s e true state 
is 𝜔1but decide 𝜔2 s e 𝑝 𝑥|𝜔1 𝑝 𝜔1 > 𝑝 𝑥|𝜔2 𝑝 𝜔2   𝑝 𝑥|𝜔1 𝑝 𝜔1 𝑑𝑥 𝑅2   𝑝 𝑥|𝜔2 𝑝 𝜔2 𝑑𝑥 𝑅1 13 

 



 

 

Cost Consideration 

• Salmon/Sea bass Illustration 
Costs of different errors should be considered 
Case 1: ’s view 

Salmon is more expensive than sea bass. Selling 
salmon with the price of sea bass will be a 

Case 2: Customer’s view 
loss 

Customers who buy salmon will be very upset if 
they get sea bass 
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Loss Function 

• Measures the cost for each action taken 
• Convert a probability determination into a decision 
• Let 1 2 𝑐 be the set of categories 1 2 𝑎 be the set of possible actions 𝑖𝑗 𝑖 𝑗 be the loss urred for taking 

action 𝑖 when the category is 𝑗. 
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Loss Function 

• Given observation , if the true state is 𝑗 and we 
take action 𝑖, then loss is 𝑖𝑗
The expected loss associated with taking action 𝑖
is Conditional risk (expected loss of taking action 𝑖) 𝑐 𝑖 𝑗 𝑗𝑗=1 𝑖
And overall risk (expected loss) 
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Loss Function 

• Bayes decision procedure provides the optimal 
performance on an overall risk 
Choose 𝑖 so that 𝑖 is as small as possible for 
every , then the overall risk will be minimized. 
So compute 𝑖𝑖 for which 𝑖 for all and select the action 

is the minimum. 
• in this case is called the Bay sk 
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Loss Function 

• For example, a two-class problem: 1 11 121 1 1222 222
Where 𝑖𝑗 𝑖 𝑗 be the loss urred for 
taking action 𝑖 when the category 𝑗. 

• Select the action 𝑖 for which 𝑖 is minimum 
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Minimum Risk Decision Rule 

• The fundamental rule is to decide 1 if 1 < 2
• This result in the equivalent rule: 

Decide 1 if 21 11 1 112 22 2 2
Otherwise, decide 2
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Minimum Risk Decision Rule 

• If we assume 21 11, the preceding rule is 
equivalent to the following rule: 𝑝(𝑥|𝜔1) 𝜆12−𝜆22 𝑝(𝜔2) 
If , then take action 1𝑝(𝑥|𝜔2) 𝜆21−𝜆11 𝑝(𝜔1) 
(decide 1) 
Otherwise, take action 2 (decide 2) 
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Minimum Risk Decision Rule 

• Example: 11 12 21 22 
If 1 and 212 3.7 
Then the action 2 is selected 
If 1 8 and 212
Then the action 1 is selected 
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Minimum-Error-Rate Classification 

•  Assume the following situation 
If 

The action 𝑖 is taken 
The true state of nature is 𝑗

Then 
The decision is correct if (i.e., error=0) 

Otherwise 
The decision is wrong if (i.e., error=1) 
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Minimum-Error-Rate Classification 

• Zero-one loss function 

𝑖 𝑗
No loss to a correct decision 

A unit loss to any error 

All errors are equally costly 
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Minimum-Error-Rate Classification 

• Risk: 𝑐 𝑖 𝑖 𝑗 𝑗𝑗=1 𝑗≠𝑖 𝑗𝑖
Note: zero-one loss function is used here 
Minimizing the average probability of error requires 

izing 𝑖
For Minimum error rate 
 Decide 𝑖 if 𝑖 𝑗
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Minimum-Error-Rate Classification 

𝜆 − 𝜆 𝑝(𝜔 ) 12 22 2 = 𝜃 𝜆 𝜆21 − 𝜆11 𝑝(𝜔1) 0 1 2 0 Other loss function 𝜆 = 2𝑝(𝜔2) 𝜃𝑏 = 𝑝(𝜔1) 
If loss function penalizes mis-categorizing 𝝎𝟐 as 𝝎𝟏 (𝝀𝟏𝟐 = 𝟐) more than the 
converse (penalize mis-categorizing 𝝎𝟏 as 𝝎𝟐 (𝝀𝟐𝟏 = 𝟏) ) 
We get larger threshold 𝜽𝒃 > 𝜽𝒂 
Hence 𝑹𝟏 becomes smaller 
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0 1 1 0 Zero-one loss function 𝜆 = 𝑝(𝜔2) 𝜃𝑎 = 𝑝(𝜔1) 

𝑝(𝑥|𝜔1) > 𝜆12 − 𝜆22 𝑝(𝜔2) 𝑝(𝑥|𝜔2) 𝜆21 − 𝜆11 𝑝(𝜔1)   

 



 

 

Minimum-Error-Rate Classification 

Salmon/Sea bass Illustration 
• Risk 1: misclassifying salmon as sea bass 
• Risk 2: misclassifying sea bass as salmon 
• In last example, we penalize misclassifying salmon 

as sea bass ( 12 ) more than the converse 
(penalize misclassifying sea bass as salmon 
( 21 ) ). This is from the view point of the fish 
producer. Hence the risk 1 would become smaller 

• Recall that 1 2 if we make 12 21
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Classifiers 

• One of the most useful ways to represent classifier is in 
terms of a set of discriminant functions: 𝑖 , 

• will be assigned to class 𝑖 if 𝑖 𝑗 for all 
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Discrimination Function 

• For  Minimum-Error-Rate 𝑖 𝑖
• Choice of discriminant functions not unique! 

If is a monotonically reasing function, then 𝑖 𝑗 if 𝑖 𝑗 for all 
Example, the natural log function 𝑖 𝑖 𝑖 𝑖
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Decision Surfaces 

• Feature space divided into 
decision regions 

• If 𝑖 𝑗
then is in 𝑖

• The decision boundary 
consists of two hyperbolas 
( being Gaussian) 
The decision region 2 is not 
simply connected 

• Ellipses mark where density 
is 1 𝑒 times that of peak 
distribution 
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Two-Class Problem 

• A classifier that ces a pattern in one of only two 
classes 

It has two discriminant functions 1 and 2
Re-define a single discriminant function 1 2
Decide 1, if ; 
Otherwise, decide 2
Two commonly used minimum-error-rate 
discriminant functions: 1 2𝑝(𝑥|𝜔1) 𝑝(𝜔1) or 𝑝(𝑥|𝜔2) 𝑝(𝜔2) 
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Special Case: Normal Distribution 

• Advantages of Normal 
Distribution: 
 ytically tractable, 

continuous 
A lot of processes are 
asymptotically Gaussian 
Handwritten characters, 
speech sounds are ideal 
or prototype corrupted 
by random process 
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Normal Distribution 

Probability that 𝑋 falls into 
the interval (𝑎, 𝑏): 



  𝑏 𝑝 𝑥 𝑑𝑥 𝑎 
Mean: 𝜇 =  ∞ 𝑥𝑝 𝑥 𝑑𝑥 −∞ 
Variance: ∞ 𝜎2 =   (𝑥 − 𝜇)2𝑝 𝑥 𝑑𝑥 −∞ 
 Standard Deviation: 𝜎 
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𝑝 𝑥 = 1 𝑒𝑥𝑝 − 1 𝑥 − 𝜇 2 2𝜋𝜎 2 𝜎    

 



 

 

Normal Distribution 

• Multivariate Normal Density in dimensions is: 𝑇 −1𝑑 2 1 2 
Where 1 2 𝑑 𝑇1 2 𝑑 𝑇 𝑇

and −1 are determinant and inverse 
respectively 
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Discriminant Functions for the 
Normal Density 

• Recall, a convenient discriminant function 𝑖 𝑖 𝑖
For the case of multivariate normal 𝑇 −1 𝑖 𝑖 𝑖 𝑖 

𝑖𝑖 𝑖
𝑖

𝑖
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Discriminant Functions for 
Multivariate Normal Density 

• Case i 2 ( stands for the identity matrix) 
Examples ( 1 2 ) 
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Discriminant Functions for 
Multivariate Normal Density 

• Influence of Priors on Decision Boundaries 
• As priors change, the decision boundary shifts. For 

sufficiently disparate priors the boundary will not 
li ween the means 

p p 𝜔1 𝜔2 = 0.9 = 0.1 p p 𝜔1 𝜔2 = 0.7 = 0.3 

p 𝜔1 p 𝜔2 p 𝜔1 p 𝜔2 
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Discriminant Functions for 
Multivariate Normal Density 

• Case 𝑖
Covariance of all classes are identical but arbitrary 
Geometrically, the samples fall in hyper-ellipsoidal 
clusters of equal size and shape 
The discriminant function: 1 𝑇 −1 𝑖 𝑖 𝑖 𝑖𝑖 2 
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