Pattern Recognition

Bayesian Decision Theory

- **Bayes Rule**
- **Bayes Error**
- **Loss Function**
- **Discriminant Function**
- **Normal Distribution**
- **Maximum Likelihood**

An Example: Prior Probability

- One day, Peter shows swine flu symptoms He went to see a doctor if he is OK $\omega \in \{ill, healthy\}$
- The doctor said, according to past data,
	- \checkmark 85% of people was healthy Prior Probability $p(\omega = healthy) = 0.85$
	- \checkmark 15% of people was ill Prior Probability $p(\omega = ill) = 0.15$ \checkmark $p(\omega = healthy)$

therefore, Peter was healthy

An Example: Conditional Probability

• The problem of using Prior Probability to determine our health condition:

Ignore our present state of health

• Need to measure some patterns of our physical condition

Example: Measure the amount of red blood cells denoted by x

An Example: Conditional Probability

• According to the previous knowledge (Conditional Probability, also called likelihood):

An Example: Posterior Probability

• Now, we know the following information:

 $p(ill) = 0.15$ $p(headthy) = 0.85$

 $p(x = 2|ill) = 0.67$ $p(x = 2| healthy) = 0.05$

- How can they help the doctor make a decision?
	- Bayes Formula

likelihood prior
\n
$$
p(\omega|x) = \frac{p(x|\omega)p(\omega)}{p(x)}
$$
\nposterior
\nevidence

Bayes Rule

- Bayes Decision Rule:
	- \checkmark Decide ω_1 if $p(\omega_1|x) > p(\omega_2)$
	- \checkmark Decide ω_2 if $p(\omega_2|x) > p(\omega_1)$
- Or equivalent to
	- \checkmark Decide ω_1 if $p(x|\omega_1)p(\omega_1) > p(x|\omega_2)p(\omega_2)$
	- \checkmark Decide ω_2 if $p(x|\omega_2)p(\omega_2) > p(x|\omega_1)p(\omega_1)$

is ignored since it is the same for both classes $\overline{2}$

$$
p(x) = p(x|\omega_j)p(\omega_j)
$$

$$
p(\omega|x) = \frac{p(\omega)p(\omega)}{p(x)}
$$

 $p(x|\omega)p(\omega)$

Maximum Likelihood (ML) Rule

• It is a special case of Bayes Rule When $p(\omega_1)=p(\omega_2)$, the decision is based entirely on the likelihood $p\bigl(x|\omega_j\bigr)$ $p(\omega|x) =$ $p(x)$

 $p(\omega|x) \propto p(x|\omega)$

- Decision Rule:
	- \checkmark Decide ω_1 if $p(x|\omega_1) > p(x|\omega_2)$
	- \checkmark Decide ω_2 if $p(x|\omega_2) > p(x|\omega_1)$

 $p(x|\omega)p(\omega)$

An Example: Final Decision by Doctor

- $p(\omega|x) =$ $p(x|\omega)p(\omega)$ $p(x)$
- $\check{p}(ill) = 0.15,$ $p(headthy) = 0.85$ $\check{p}(x = 2|ill) = 0.67$, • $p(\omega|x=2) \propto p(x=2|\omega) \times p(\omega)$
	- \check{p} (healthy $|x = 2) \propto 0.05 \times 0.85 = 0.0425$
	- $\check{p}(i\ell x = 2) \propto 0.67 \times 0.15 = 0.1005$
- According to Bayes Decision Rule

$$
p(ill|x=2) > p(headthy|x=2)
$$

therefore, Peter was ill.

• Recall:

Decision Boundary

Probability of Error

• There are two possible errors

• Probability of error is

 $_{1}|x)$ if we decide ω_2 $_2|x)$ if we decide ω_1

Classification Error

- Bayes rule or Bayes classifier
	- \checkmark If $p(\omega_1|x) > p(\omega_2|x)$, decide ω_1
	- \checkmark Otherwise, decide ω_2
- Therefore, the classification error is $1\vert\mathcal{X}$), $p(\omega_2)$

Extension

• Extend to

Multi-dimensional features

$$
x \to X
$$

Multi-class problem (3 or more classes) 1 , ω_2 , ..., ω_c

• Bayes rule or Bayes classifier for multi-class problems

Select ω_i if $p(\omega_i|x) > p(\omega_i|x)$ for all $i \neq i$

Probability of error for multi-class problems $p(error|x)$ $_{1}$ $\left| {\mathcal X} \right.$ ρ ($\omega _{2}$ $\left| {\mathcal X} \right.$ ρ , ... , p ($\omega _{c}$

Bayes Error Rate

Cost Consideration

• **Salmon/Sea bass Illustration**

Costs of different errors should be considered Case 1: Company's view

Salmon is more expensive than sea bass. Selling salmon with the price of sea bass will be a loss

Case 2: Customer's view

Customers who buy salmon will be very upset if they get sea bass

- Measures the cost for each action taken
- Convert a probability determination into a decision
- Let

1, ω 2, ..., ω_c } be the set of c categories $_1, \alpha_2, ..., \alpha_a$ } be the set of a possible actions $\lambda_{ij} = \lambda(\alpha_i | \omega_j)$ be the loss incurred for taking action α_i when the category is ω_j .

• Given observation x , if the true state is ω_j and we take action α_i , then loss is λ_{ij}

The expected loss associated with taking action α_i is Conditional risk (expected loss of taking action α_i) $\frac{1}{C}$

$$
R(\alpha_i|x) = \lambda(\alpha_i|\omega_j) p(\omega_j|x)
$$

$$
j=1
$$

And overall risk R (expected loss)

$$
R = R(a(x)|x)p(x)dx
$$

• Bayes decision procedure provides the optimal performance on an overall risk

Choose α_i so that $R(\alpha_i|x)$ is as small as possible for every x , then the overall risk will be minimized.

So compute $R(\alpha_i|x)$ for all i and select the action $_i$ for which $R(\alpha_i \mskip 1mu | \mskip 1mu x)$ is the minimum.

 \bullet R in this case is called the Bayes Risk

• For example, a two-class problem:

$$
R(\alpha_1|x) = \lambda_{11}p(\omega_1|x) + \lambda_{12}p(\omega_2|x)
$$

$$
R(\alpha_2|x) = \lambda_{21}p(\omega_1|x) + \lambda_{22}p(\omega_2|x)
$$

Where $\lambda_{ij} = \lambda(\alpha_i | \omega_j)$ be the loss incurred for taking action α_i when the category ω_j .

• Select the action α_i for which $R(\alpha_i|x)$ is minimum

Minimum Risk Decision Rule

- The fundamental rule is to decide ω_1 if $_1|x)$ < R(α_2
- This result in the equivalent rule:

Decide ω_1 if

$$
(\lambda_{21} - \lambda_{11})p(x|\omega_1)p(\omega_1)
$$

>
$$
(\lambda_{12} - \lambda_{22})p(x|\omega_2)p(\omega_2)
$$

Otherwise, decide ω_2

Minimum Risk Decision Rule

• If we assume $\lambda_{21} > \lambda_{11}$, the preceding rule is equivalent to the following rule:

 $p(x|\omega_1)$ $\lambda_{12}-\lambda_{22}$ $p(\omega_2)$ If $\frac{1}{p(x|\omega_2)} > \frac{1}{\lambda_{21}-\lambda_{11}} \frac{1}{p(\omega_1)}$, then take action α_1 (decide ω_1)

Otherwise, take action α_2 (decide ω_2)

Minimum Risk Decision Rule

• Example:

$$
\lambda = \begin{pmatrix} \lambda_{11} & \lambda_{12} \\ \lambda_{21} & \lambda_{22} \end{pmatrix} = \begin{pmatrix} 1 & 5 \\ 10 & 3 \end{pmatrix}
$$

If $p(\omega_1|x) = 0.1$ and $p(\omega_2|x) = 0.9$
 $R(\alpha_1|x) = 1 \times 0.1 + 5 \times 0.9 = 4.6$
 $R(\alpha_2|x) = 10 \times 0.1 + 3 \times 0.9 = 3.7$

Then the action α_2 is selected If $p(\omega_1|x)=0.8$ and $p(\omega_2)$ $R(\alpha_1|x) = 1 \times 0.8 + 5 \times 0.2 = 1.8$ $R(\alpha_2|x) = 10 \times 0.8 + 3 \times 0.2 = 8.6$ Then the action α_1 is selected α_1

• Assume the following situation If

The action α_i is taken

The true state of nature is ω_j

Then

The decision is correct if $i = j$ (i.e., error=0) **Otherwise**

The decision is wrong if $i \neq j$ (i.e., error=1)

• Zero-one loss function

$$
\lambda(\alpha_i|\omega_j) = \begin{array}{cc} 0 & i = j \\ 1 & i \neq j \end{array} i, j = 1, 2, ..., c
$$

- \checkmark No loss to a correct decision $\lambda = 0$
- \checkmark A unit loss to any error $\lambda = 1$

All errors are equally costly

• Risk:

$$
\lambda = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
$$

 $\alpha_i|x\rangle = \frac{c}{j=1} \lambda(\alpha_i|\omega_j) p(\omega_j)$ j≠i $p(\omega_j$ $= 1 - p(\omega_i|x)$

Note: zero-one loss function is used here

Minimizing the average probability of error requires maximizing $p(\omega_i|x)$

For Minimum error rate

 \checkmark Decide ω_i if $p(\omega_i|x) > p(\omega_i|x)$, $\forall j \neq i$

$$
\frac{p(x|\omega_1)}{p(x|\omega_2)} > \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}} \frac{p(\omega_2)}{p(\omega_1)}
$$

$$
\frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}} \frac{p(\omega_2)}{p(\omega_1)} = \theta_{\lambda}
$$

Other loss function
$$
\lambda = \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix}
$$

$$
\theta_b = \frac{2p(\omega_2)}{p(\omega_1)}
$$

0 Zero-one loss function $\lambda = \begin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix}$ $\binom{1}{0}$

$$
\theta_a = \frac{p(\omega_2)}{p(\omega_1)}
$$

If loss function penalizes mis-categorizing ω_2 as ω_1 ($\lambda_{12} = 2$) more than the **converse (penalize mis-categorizing as** $\omega_2 (\lambda_{21} = 1)$ We get larger threshold $\boldsymbol{\theta}_b > \boldsymbol{\theta}_a$ **Hence becomes smaller**

Salmon/Sea bass Illustration

- Risk R_1 : misclassifying salmon as sea bass
- Risk R_2 : misclassifying sea bass as salmon
- In last example, we penalize misclassifying salmon as sea bass ($\lambda_{12} = 2$) more than the converse (penalize misclassifying sea bass as salmon $(\lambda_{21} = 1)$). This is from the view point of the fish producer. Hence the risk R_1 would become smaller
- Recall that $R_1 = R_2$ if we make $\lambda_{12} = \lambda_{21}$

Classifiers

• One of the most useful ways to represent classifier is in terms of a set of discriminant functions:

$$
g_i(x), i=1,\ldots,c
$$

• x will be assigned to class ω_i if $g_i(x) > g_i(x)$ for all $j \neq i$

27

Discrimination Function

• For Minimum-Error-Rate

 $g_i(x) = p(\omega_i|x)$

• Choice of discriminant functions not unique! If G is a monotonically increasing function, then $G(g_i(x)) > G(g_i(x))$ if $g_i(x) > g_i(x)$ for all $i \neq i$ Example, the natural log function $G(g_i(x)) = \ln(g_i(x))$ $= \ln(p(x|\omega_i)) + \ln(p(\omega_i)) - \ln(p(x))$

Decision Surfaces

- Feature space divided into c decision regions
- If $g_i(x) > g_j(x)$ $\forall j \neq i$ then x is in R_i
- The decision boundary consists of two hyperbolas $(p$ being Gaussian)
	- The decision region R_2 is not simply connected
- Ellipses mark where density is 1 $_e$ times that of peak distribution

Two-Class Problem

• A classifier that places a pattern in one of only two classes

It has two discriminant functions g_1 and g_2 Re-define a single discriminant function

$$
g(x) = g_1(x) - g_2(x)
$$

Decide ω_1 , if $g(x) > 0$;

Otherwise, decide ω_2

Two commonly used minimum-error-rate discriminant functions:

$$
g(x) = p(\omega_1|x) - p(\omega_2|x)
$$

or
$$
g(x) = \ln \frac{p(x|\omega_1)}{p(x|\omega_2)} + \ln \frac{p(\omega_1)}{p(\omega_2)}
$$

Special Case: Normal Distribution

- Advantages of Normal Distribution:
	- \checkmark Analytically tractable, continuous
	- \checkmark A lot of processes are asymptotically Gaussian
	- \checkmark Handwritten characters, speech sounds are ideal or prototype corrupted by random process

Normal Distribution

З

Normal Distribution

• Multivariate Normal Density in d dimensions is:

$$
p(x) = \frac{1}{(2\pi)^{d} \, 2\left|\sum\right|^1 2} exp \left[-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right]
$$

Where

$$
x = (x_1, x_2, ..., x_d)^T
$$

$$
\mu = (\mu_1, \mu_2, ..., \mu_d)^T
$$

$$
\Sigma = (x - \mu)(x - \mu)^T p(x) dx
$$

and Σ^{-1} are determinant and inverse respectively

Discriminant Functions for the Normal Density

• Recall, a convenient discriminant function $g_i(x) = ln(p(x|\omega_i)) + ln(p(\omega_i))$

For the case of multivariate normal

$$
g_i(x) = -\frac{1}{2}(x - \mu_i)^T \Sigma_i^{-1} (x - \mu_i) - \frac{d}{2} \ln(2\pi) - \frac{1}{2} \ln(|\Sigma_i|) + \ln(p(\omega_i))
$$

 $_{i}$) \sim N (μ_{i} , Δ_{i}

Discriminant Functions for Multivariate Normal Density

• Case $\Sigma_i = \sigma^2 I$ (*I* stands for the identity matrix) Examples ($p(\omega_1)=0.5$, $p(\omega_2)=0.5$)

Discriminant Functions for Multivariate Normal Density

- Influence of Priors on Decision Boundaries
- As priors change, the decision boundary shifts. For sufficiently disparate priors the boundary will not lie between the means

Discriminant Functions for Multivariate Normal Density

• Case $\Sigma_i = \Sigma$

Covariance of all classes are identical but arbitrary

Geometrically, the samples fall in hyper-ellipsoidal clusters of equal size and shape

The discriminant function:

$$
g_i(x) = -\frac{1}{2}(x - \mu_i)^T \Sigma_i^{-1}(x - \mu_i) + ln p(\omega_i)
$$

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如 要下载或阅读全文,请访问:[https://d.book118.com/11811204612](https://d.book118.com/118112046121006023) [1006023](https://d.book118.com/118112046121006023)