Pattern Recognition

Bayesian Decision Theory

- Bayes Rule
- Bayes Error
- Loss Function
- Discriminant Function
- Normal Distribution
- Maximum Likelihood

An Example: Prior Probability

- One day, Peter shows swine flu symptoms He went to see a doctor if he is OK ω ∈ {*ill*, *healthy*}
- The doctor said, according to past data,
 - ✓ 85% of people was healthy Prior Probability $p(\omega = healthy) = 0.85$
 - ✓ 15% of people was ill Prior Probability $p(\omega = ill) = 0.15$ ✓ $p(\omega = healthy) > p(\omega = ill)$

therefore, Peter was healthy

An Example: Conditional Probability

• The problem of using Prior Probability to determine our health condition:

Ignore our present state of health

Need to measure some patterns of our physical condition

Example: Measure the amount of red blood cells denoted by x

An Example: Conditional Probability

 According to the previous knowledge (Conditional Probability, also called likelihood):

An Example: Posterior Probability

• Now, we know the following information:

p(ill) = 0.15 p(healthy) = 0.85

p(x = 2|ill) = 0.67 p(x = 2|healthy) = 0.05

- How can they help the doctor make a decision?
 - ✓ Bayes Formula

likelihood prior

$$p(\omega|x) = \frac{p(x|\omega)p(\omega)}{p(x)}$$
posterior
evidence

Bayes Rule

- Bayes Decision Rule:
 - ✓ Decide ω_1 if $p(\omega_1|x) > p(\omega_2|x)$
 - ✓ Decide ω_2 if $p(\omega_2|x) > p(\omega_1|x)$
- Or equivalent to
 - ✓ Decide ω_1 if $p(x|\omega_1)p(\omega_1) > p(x|\omega_2)p(\omega_2)$
 - ✓ Decide ω_2 if $p(x|\omega_2)p(\omega_2) > p(x|\omega_1)p(\omega_1)$

p(x) is ignored since it is the same for both classes

$$p(x) = p(x|\omega_j)p(\omega_j)$$

$$p(\omega|x) = \frac{p(x|\omega)p(\omega)}{p(x)}$$

Maximum Likelihood (ML) Rule

• It is a special case of Bayes Rule When $p(\omega_1) = p(\omega_2)$, the decision is based entirely on the likelihood $p(x|\omega_j)$

 $p(\omega|x) \propto p(x|\omega)$

- Decision Rule:
 - ✓ Decide ω_1 if $p(x|\omega_1) > p(x|\omega_2)$
 - ✓ Decide ω_2 if $p(x|\omega_2) > p(x|\omega_1)$

An Example: Final Decision by Doctor

- $p(\omega|x) = \frac{p(x|\omega)p(\omega)}{p(x)}$
- ✓ p(ill) = 0.15, p(healthy) = 0.85✓ p(x = 2|ill) = 0.67, p(x = 2|healthy) = 0.05
- $p(\omega|x=2) \propto p(x=2|\omega) \times p(\omega)$
 - ✓ $p(healthy|x = 2) \propto 0.05 \times 0.85 = 0.0425$
 - ✓ $p(ill|x = 2) \propto 0.67 \times 0.15 = 0.1005$
- According to Bayes Decision Rule

$$p(ill|x = 2) > p(healthy|x = 2),$$

therefore, Peter was ill.

• Recall:

Decision Boundary

Probability of Error

• There are two possible errors

• Probability of error is

 $p(error|x) = p(\omega_1|x)$ if we decide ω_2 $p(error|x) = p(\omega_2|x)$ if we decide ω_1

Classification Error

- Bayes rule or Bayes classifier
 - ✓ If $p(\omega_1|x) > p(\omega_2|x)$, decide ω_1
 - ✓ Otherwise, decide ω_2
- Therefore, the classification error is $p(error|x) = min[p(\omega_1|x), p(\omega_2|x)]$

Extension

• Extend to

Multi-dimensional features

$$x \to X$$

Multi-class problem (3 or more classes) $\Omega = \{\omega_1, \omega_2, \dots, \omega_c\}$

Bayes rule or Bayes classifier for multi-class problems

Select ω_i if $p(\omega_i | x) > p(\omega_j | x)$ for all $j \neq i$

Probability of error for multi-class problems p(error|x) $= 1 - max[p(\omega_1|x), p(\omega_2|x), ..., p(\omega_c|x)]$

Bayes Error Rate

Cost Consideration

Salmon/Sea bass Illustration

Costs of different errors should be considered

Case 1: Company's view

Salmon is more expensive than sea bass. Selling salmon with the price of sea bass will be a loss

Case 2: Customer's view

Customers who buy salmon will be very upset if they get sea bass

- Measures the cost for each action taken
- Convert a probability determination into a decision
- Let

 $\{\omega_1, \omega_2, ..., \omega_c\}$ be the set of *c* categories $\{\alpha_1, \alpha_2, ..., \alpha_a\}$ be the set of a possible actions $\lambda_{ij} = \lambda(\alpha_i | \omega_j)$ be the loss incurred for taking action α_i when the category is ω_j .

• Given observation x, if the true state is ω_j and we take action α_i , then loss is λ_{ij}

The expected loss associated with taking action α_i is Conditional risk (expected loss of taking action α_i)

$$R(\alpha_i | x) = \lambda(\alpha_i | \omega_j) p(\omega_j | x)$$

$$j=1$$
And overall risk R (expected loss)

$$R = R(a(x)|x)p(x)dx$$

 Bayes decision procedure provides the optimal performance on an overall risk

Choose α_i so that $R(\alpha_i|x)$ is as small as possible for every x, then the overall risk will be minimized.

So compute $R(\alpha_i | x)$ for all *i* and select the action α_i for which $R(\alpha_i | x)$ is the minimum.

• *R* in this case is called the Bayes Risk

• For example, a two-class problem:

$$R(\alpha_1|x) = \lambda_{11}p(\omega_1|x) + \lambda_{12}p(\omega_2|x)$$

$$R(\alpha_2|x) = \lambda_{21}p(\omega_1|x) + \lambda_{22}p(\omega_2|x)$$

Where $\lambda_{ij} = \lambda(\alpha_i | \omega_j)$ be the loss incurred for taking action α_i when the category ω_j .

• Select the action α_i for which $R(\alpha_i|x)$ is minimum

Minimum Risk Decision Rule

- The fundamental rule is to decide ω_1 if $R(\alpha_1|x) < R(\alpha_2|x)$
- This result in the equivalent rule:

Decide ω_1 if

$$(\lambda_{21} - \lambda_{11})p(x|\omega_1)p(\omega_1)$$

> $(\lambda_{12} - \lambda_{22})p(x|\omega_2)p(\omega_2)$

Otherwise, decide ω_2

Minimum Risk Decision Rule

• If we assume $\lambda_{21} > \lambda_{11}$, the preceding rule is equivalent to the following rule:

If $\frac{p(x|\omega_1)}{p(x|\omega_2)} > \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}} \frac{p(\omega_2)}{p(\omega_1)}$, then take action α_1 (decide ω_1)

Otherwise, take action α_2 (decide ω_2)

Minimum Risk Decision Rule

• Example:

$$\lambda = \begin{pmatrix} \lambda_{11} & \lambda_{12} \\ \lambda_{21} & \lambda_{22} \end{pmatrix} = \begin{pmatrix} 1 & 5 \\ 10 & 3 \end{pmatrix}$$

If $p(\omega_1 | x) = 0.1$ and $p(\omega_2 | x) = 0.9$
 $R(\alpha_1 | x) = 1 \times 0.1 + 5 \times 0.9 = 4.6$
 $R(\alpha_2 | x) = 10 \times 0.1 + 3 \times 0.9 = 3.7$
Then the action α_2 is colocted

If $p(\omega_1|x) = 0.8$ and $p(\omega_2|x) = 0.2$ $R(\alpha_1|x) = 1 \times 0.8 + 5 \times 0.2 = 1.8$ $R(\alpha_2|x) = 10 \times 0.8 + 3 \times 0.2 = 8.6$ Then the action α_1 is selected

Assume the following situation
 If

The action α_i is taken

The true state of nature is ω_j

Then

The decision is correct if i = j (i.e., error=0) Otherwise

The decision is wrong if $i \neq j$ (i.e., error=1)

Zero-one loss function

$$\lambda(\alpha_i|\omega_j) = \begin{array}{cc} 0 & i=j\\ 1 & i\neq j \end{array} \quad i,j=1,2,\ldots,c$$

- ✓ No loss to a correct decision $\lambda = 0$
- ✓ A unit loss to any error $\lambda = 1$

$$\lambda = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

All errors are equally costly

• Risk:

$$\lambda = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

 $R(\alpha_i | x) = \sum_{j=1}^{c} \lambda(\alpha_i | \omega_j) p(\omega_j | x)$ $= \sum_{j \neq i} p(\omega_j | x)$ $= 1 - p(\omega_i | x)$

Note: zero-one loss function is used here

Minimizing the average probability of error requires maximizing $p(\omega_i | x)$

For Minimum error rate

✓ Decide ω_i if $p(\omega_i | x) > p(\omega_j | x)$, $\forall j \neq i$

$$\frac{p(x|\omega_1)}{p(x|\omega_2)} > \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}} \frac{p(\omega_2)}{p(\omega_1)}$$

$$\frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}} \frac{p(\omega_2)}{p(\omega_1)} = \theta_{\lambda}$$

Other loss function
$$\lambda = \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix}$$

 $\theta_b = \frac{2p(\omega_2)}{p(\omega_1)}$

Zero-one loss function $\lambda = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

$$\theta_a = \frac{p(\omega_2)}{p(\omega_1)}$$

If loss function penalizes mis-categorizing ω_2 as ω_1 ($\lambda_{12} = 2$) more than the converse (penalize mis-categorizing ω_1 as ω_2 ($\lambda_{21} = 1$)) We get larger threshold $\theta_b > \theta_a$ Hence R_1 becomes smaller

Salmon/Sea bass Illustration

- Risk *R*₁: misclassifying salmon as sea bass
- Risk R₂: misclassifying sea bass as salmon
- In last example, we penalize misclassifying salmon as sea bass ($\lambda_{12} = 2$) more than the converse (penalize misclassifying sea bass as salmon ($\lambda_{21} = 1$)). This is from the view point of the fish producer. Hence the risk R_1 would become smaller
- Recall that $R_1 = R_2$ if we make $\lambda_{12} = \lambda_{21}$

Classifiers

• One of the most useful ways to represent classifier is in terms of a set of discriminant functions:

$$g_i(x), i = 1, ..., c$$

• x will be assigned to class ω_i if $g_i(x) > g_j(x)$ for all $j \neq i$

27

Discrimination Function

• For Minimum-Error-Rate

 $g_i(x) = p(\omega_i | x)$

• Choice of discriminant functions not unique! If G is a monotonically increasing function, then $G(g_i(x)) > G(g_j(x))$ if $g_i(x) > g_j(x)$ for all $j \neq i$ Example, the natural log function $G(g_i(x)) = \ln(g_i(x))$ $= \ln(p(x|\omega_i)) + \ln(p(\omega_i)) - \ln(p(x))$

Decision Surfaces

- Feature space divided into c decision regions
- If $g_i(x) > g_j(x) \forall j \neq i$ then x is in R_i
- The decision boundary consists of two hyperbolas (p being Gaussian)
 - The decision region R_2 is not simply connected
- Ellipses mark where density is ¹ _e times that of peak distribution

Two-Class Problem

 A classifier that places a pattern in one of only two classes

It has two discriminant functions g_1 and g_2

Re-define a single discriminant function

$$g(\mathbf{x}) = g_1(\mathbf{x}) - g_2(\mathbf{x})$$

Decide ω_1 , if g(x) > 0;

Otherwise, decide ω_2

Two commonly used minimum-error-rate discriminant functions:

$$g(x) = p(\omega_1 | x) - p(\omega_2 | x)$$

or
$$g(x) = ln \frac{p(x | \omega_1)}{p(x | \omega_2)} + ln \frac{p(\omega_1)}{p(\omega_2)}$$

Special Case: Normal Distribution

- Advantages of Normal Distribution:
 - Analytically tractable, continuous
 - ✓ A lot of processes are asymptotically Gaussian
 - Handwritten characters, speech sounds are ideal or prototype corrupted by random process

Normal Distribution

Normal Distribution

• Multivariate Normal Density in *d* dimensions is:

$$p(x) = \frac{1}{(2\pi)^{d}} \sum_{2|\Sigma|^{1}} e^{xp} \left[-\frac{1}{2} (x-\mu)^{T} \Sigma^{-1} (x-\mu) \right]$$
Where

$$x = (x_1, x_2, ..., x_d)^T$$

 $\mu = (\mu_1, \mu_2, ..., \mu_d)^T$

$$\Sigma = (x - \mu)(x - \mu)^T p(x) dx$$

 $|\Sigma|$ and Σ^{-1} are determinant and inverse respectively

Discriminant Functions for the Normal Density

• Recall, a convenient discriminant function $g_i(x) = ln(p(x|\omega_i)) + ln(p(\omega_i))$

For the case of multivariate normal

$$g_{i}(x) = -\frac{1}{2}(x - \mu_{i})^{T} \Sigma_{i}^{-1}(x - \mu_{i}) -\frac{d}{2} \ln(2\pi) - \frac{1}{2} \ln(|\Sigma_{i}|) + \ln(p(\omega_{i}))$$

If $p(x|\omega_i) \sim N(\mu_i, \Sigma_i)$

Discriminant Functions for Multivariate Normal Density

• Case $\Sigma_i = \sigma^2 I$ (*I* stands for the identity matrix) Examples ($p(\omega_1) = 0.5, p(\omega_2) = 0.5$)

Discriminant Functions for Multivariate Normal Density

- Influence of Priors on Decision Boundaries
- As priors change, the decision boundary shifts. For sufficiently disparate priors the boundary will not lie between the means

Discriminant Functions for Multivariate Normal Density

• Case $\Sigma_i = \Sigma$

Covariance of all classes are identical but arbitrary

Geometrically, the samples fall in hyper-ellipsoidal clusters of equal size and shape

The discriminant function:

$$g_i(x) = -\frac{1}{2}(x - \mu_i)^T \Sigma_i^{-1}(x - \mu_i) + lnp(\omega_i)$$

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如 要下载或阅读全文,请访问: <u>https://d.book118.com/11811204612</u> <u>1006023</u>