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An Example: Prior Probability

* One day, Peter shows swine flu symptoms
He went to see a doctor if he is OK
w € {ill, healthy}
* The doctor said, according to past data,
v 85% of people was healthy
Prior Probability p(w = healthy) = 0.85

v 15% of people was ill
Prior Probability p(w = ill) = 0.15
v p(w = healthy)>p(w = ill)
therefore, Peter was healthy



An Example: Conditional Probability

* The problem of using Prior Probability to determine
our health condition:

lgnore our present state of health

* Need to measure some patterns of our physical
condition

Example: Measure the amount of red blood cells
denoted by x



An Example: Conditional Probability

* According to the previous knowledge (Conditional
Probability, also called likelihood):

Pix| w) px=2 | ill) =0.67

p(x | ) p(x | healthy)

12‘456?*

p(x=2 | healthy) = 0.05



An Example: Posterior Probability

* Now, we know the following information:
p(ill) = 0.15 p(healthy) = 0.85

p(x = 2[ill) = 0.67 p(x = 2|healthy) = 0.05

* How can they help the doctor make a decision?

v" Bayes Formula

likelihood prior

(ol = PEOP@)
cor p(x)
posterior evidence



Bayes Rule

p(x|w)p(w)
p(x)

* Bayes Decision Rule: p(wlx) =

v Decide wiif p(wi|x) > p(w2|x)

v Decide wzif p(w2|x) > p(wi|x)
* Or equivalent to

v Decide wiif p(x|w1)p(w1) > p(x|w2)p(w2)

v Decide wzif p(x|w2)p(w2) > p(x|wi)p(w1)

p(x) is ignored since it izs the same for both classes

p() = p(xlw;)p(w))
j=1



Maximum Likelihood (ML) Rule

* It is a special case of Bayes Rule

p(wl|x) =

p(x|w)p(w)

p(x)

When p(w1) = p(w2), the decision is based

entirely on the likelihood p(x|a)j )
p(wlx) < p(x|w)

* Decision Rule:

v Decide wiif p(x|w1) > p(x|w2)
v' Decide wa2if p(x|w2) > p(x|w1)




An Example: Final Decision by Doctor

p(w|x) = p(x|w)p(w)
* Recall: o
v' p(ill) = 0.15, o(healthy) <085

v p(x = 2|ill) = 0.67, p(x = 2|healthy) = 0.05
*plwlx =2) xp(x = 2|w) X p(w)
v p(healthy|x = 2) « 0.05 X 0.85 = 0.0425
v p(ill]x = 2) « 0.67 X 0.15 = 0.1005
* According to Bayes Decision Rule
p(illlx = 2)>p(healthy|x = 2),
therefore, Peter was ill.



Decision Boundary

p(x|/healthy)P(healthy)

p(x/il)P(ill)

il healthy



Probability of Error

* There are two possible errors

Decision
Class 1 Class 2

Correct Error

True
Class 1

Class 2

Error Correct

* Probability of error s
p(error|x) = p(w1|x) if we decide w:
p(error|x) = p(w2|x) if we decide w1
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Classification Error

* Bayes rule or Bayes classifier
v If p(wi]x) > p(wz2|x), decide w1
v' Otherwise, decide w>

* Therefore, the classification error is
p(error|x) = min|p(w1lx), p(w2|x) ]
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Extension

e Extend to

Multi-dimensional features
x =X
Multi-class problem (3 or more classes)
Q= {w1, w2, ..., W}

* Bayes rule or Bayes classifier for multi-class
problems

Select w; if p(wilx) > p(wj|x) forallj + i

Probability of error for multi-class problems
p(error|x)
=1 —max[p(w1lx), p(w2]x), ..., p(wc|x)]



Bayes Error Rate

* Error = Bayes Error + Added Error
p(error) = p(x € Ry, w1) + p(x € R1, w2)

Bayes Error

R>

p(xlmp)P(w;)
[

)

= p(x € Rz2|w1)p(w1) + p(x € R1|w1)p(w2)

= plx|lo)p(wi)dx +
R>

p(x|w2)p(w2)dx

If decision point is atx,, then min

error achieved

crror

reducible

p(x|w1)p(w1)dx

R, X, x* R,

)\

R1

p(x|w2)p(w2)dx

Added Error

This is the error since true state
is wibut decide w3 since

p(x|w1)p(w1) > p(x|w2)p(w:2)
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Cost Consideration

* Salmon/Sea bass lllustration
Costs of different errors should be considered
Case 1: Company’s view

Salmon is more expensive than sea bass. Selling
salmon with the price of sea bass will be a loss

Case 2: Customer’s view

Customers who buy salmon will be very upset if
they get sea bass



Loss Function

* Measures the cost for each action taken
e Convert a probability determination into a decision
* Let

{w1, w2, ..., wc} be the set of ¢ categories

{a1, a2, ..., aq } be the set of a possible actions

Aij = A(ai|wj) be the loss incurred for taking

action a; when the category is w;.



Loss Function

* Given observation x, if the true state is w; and we
take action a;, then loss is A;

The expected loss associated with taking action a;
is Conditional risk (exeected loss of taking action a)

R(ailx) =  Aai|w)) p(wj|x)
j=1
And overall risk R (expected loss)

R= R(a(x)|x)p(x)dx
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Loss Function

* Bayes decision procedure provides the optimal
performance on an overall risk

Choose a; so that R (a:|x) is as small as possible for
every x, then the overall risk will be minimized.

So compute R(a;:|x) for all i and select the action
a; for which R(a;|x) is the minimum.

* R in this case is called the Bayes Risk



Loss Function

* For example, a two-class problem:
R(ailx) = Aup(w1|x) + A12p (w2]|x)
R(az|x) = Az1ip(w1]x) + A22p (w2]x)
Where Aij = A(ai|wj) be the loss incurred for
taking action a; when the category w;.

e Select the action a; for which R (a:|x) is minimum



Minimum Risk Decision Rule

* The fundamental rule is to decide w1 if
R(a1]|x)<R(az|x)
* This result in the equivalent rule:
Decide w1 if
(421 — L) p(x|w1)p(w1)

> (A2 — A22)p(x|w2)p(w2)
Otherwise, decide w>
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Minimum Risk Decision Rule

* If we assume A21 > A11, the preceding rule is
equivalent to the following rule:
p(xlw1)  A12—122 p(w2)

p(x|w2) > A21—11 p(w1) ’
(decide w1)

then take action a1

Otherwise, take action a2 (decide w3)
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Minimum Risk Decision Rule

* Example:
7 = (/111 /112) _ ( 1 5)
/121 AZZ 10 3
If p(wi|x) = 0.1 and p(w2|x) =09

R(ailx) =1x01+5%x0.9=14.6
R(az|x) =10x 0.1 + 3 x 0.9 =3.7
Then the action a: is selected
If p(w1]x) = 0.8 and p(w2|x) = 0.2
R(a1]lx) =1x0.8+5x%x0.2=1.8
R(az2|x) =10x 0.8+ 3 x0.2=28.6

Then the action a1 is selected
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Minimum-Error-Rate Classification

* Assume the following situation

If

The action «a; is taken

The true state of nature is w;

Then

The decision is correct if i = j (i.e., error=0)
Otherwise

The decision is wrong if i # j (i.e., error=1)
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Minimum-Error-Rate Classification

e Zero-one loss function

2 wy) = ‘f;;; =12 .,c
v" No loss to a correct decision
A=0
v' A unit loss to any error 3= (O 1)
A=1 1 O

All errors are equally costly
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Minimum-Error-Rate Classification

* Risk: A= ((1) (1))
R(ailx) = j_1 Aai|w)) p(wj|x)
= jziP(wjlx)
=1 —p(wi|x)

Note: zero-one loss function is used here

Minimizing the average probability of error requires
maximizing p(wi|x)

For Minimum error rate
v' Decide w; if p(wilx) > p(wj|x),Vj # i
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Minimum-Error-Rate Classification

."'"{-T|~'~-'13 o B
p(x|w1) S A12 — A22 p(w2) P(@w,)
p(x|w2) A1 — A1 p(w1)
R, Re——=
Az — Ay p(w32) p /\ \/
— UA i
A21 — 11 p(w1) &, e
0, / 5.~ g ,,.JT“' -
. 0 2 i |
Other loss function 4 = (1 0) / ;
2p(w2) '
b — T ¢ 3 F
p(a)l) -I'E'u n Re] .'ir\. 9 Rl
0 1 If loss function penalizes mis-categorizing
Zero-one loss function A = ( ) w2 as w1 (A1z = 2) more than the
p(wz) 1 0 converse (penalize mis-categorizing w1 as
6., = w2 (A21 = 1))
¢ p(a)1) We get larger threshold 8, > 0,

Hence R1 becomes smaller
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Minimum-Error-Rate Classification

Salmon/Sea bass lllustration
* Risk R1: misclassifying salmon as sea bass
* Risk R2: misclassifying sea bass as salmon

* In last example, we penalize misclassifying salmon
as sea bass (112 = 2) more than the converse
(penalize misclassifying sea bass as salmon
(121 = 1) ). This is from the view point of the fish
producer. Hence the risk R1 would become smaller

* Recall that R1 = R; if we make A12 = Axq
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Classifiers

* One of the most useful ways to represent classifier is in
terms of a set of discriminant functions:

gi(x),i=1,..,c
* x will be assigned to class w; if gi (x) > gj(x) forall j # i

Action
(e.g., classification)

Discriminant
functions

[nput
npu -



Discrimination Function

* For Minimum-Error-Rate

gi(x) = p(wi|x)
* Choice of discriminant functions not unique!
If G is a monotonically increasing function, then

G(gi(x)) >G(gj(x)ifgi(x) > gj(x) forallj +i
Example, the natural log function
G(gi(x)) = In(gi(x))
= ln(p(xlwi)) + ln(p(a)i)) —In(p(x))
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Decision Surfaces

* Feature space divided into ¢
decision regions

* If gi(x) > g(x) Vj # i
then x isin R;

* The decision boundary
consists of two hyperbolas
(p being Gaussian)

The decision region Rz is not
simply connected

* Ellipses mark where density
is 1 ¢ times that of peak
distribution

R
/N
T

" Decision /
Boundary
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Two-Class Problem

* A classifier that places a pattern in one of only two
classes

It has two discriminant functions g1 and g-

Re-define a single discriminant function
9(x) = g1(x) — g2(x)

Decide w1, if g(x) > 0;

Otherwise, decide w>

Two commonly used minimum-error-rate
discriminant functions:
9(x) = p(w1i|x) — p(w2[x)
p(x|w1) p(w1)
+ In
p(x|w2) p(w2)

org(x) =In
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Special Case: Normal Distribution

* Advantages of Normal
Distribution:

v’ Analytically tractable,
continuous

v" Alot of processesare ..
asymptotically Gaussian :;;;;jjjfjfjj;..::.-----

v Handwritten characters, 1.2
speech sounds are ideal
or prototype corrupted
by random process
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Normal Distribution

v Probability that X falls into

the interval (a, b):

7 p(x)dx
v" Mean:
u= __xp()dx
v" Variance:

(00

(x —w)?p (x)dx

—00

v" Standard Deviation: o

o’ =

Probability Density —->

P~

1 _1 X —U_*
=20 |

0.5

0.4

0.3

0.2

0.1

Standard Normal Probahility Density Function
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Normal Distribution

e Multivariate Normal Density in d dimensions is:

1
p(x) = exp (= (x = WE=1(x — )

(2m)? 2|z’ 2
Where
x = (x1,Xx2, ., Xa)T
u= (p, 2, .., )’

= (x—-mwk—wp)dx

|2| and X1 are determinant and inverse
respectively
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Discriminant Functions for the
Normal Density

e Recall, a convenient discriminant function
gi(x) = ln(p(xla)i)) + In(p(w)) )
For the case of muI{ivariate normal
gi(x) =—=(x—pu)"s7 0 — ;)
1
—Eln(Zn) — Eln(IZiI)
+ ln(p(a)i))
If p(x|wi)~N(ui, i)
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Discriminant Functions for
Multivariate Normal Density

e Case 2i = o2l (I stands for the identity matrix)
Examples (p(w1) = 0.5, p(w2) = 0.5)

Piey =5 Pien =5
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Discriminant Functions for
Multivariate Normal Density

* Influence of Priors on Decision Boundaries

* As priors change, the decision boundary shifts. For
sufficiently disparate priors the boundary WI|| not
lie between the means T e

1) = 0.7 ((1)1) = 0.9
BEZ))Z% =0.3 112(wz) =0.1

p(w1) p(w2) p(w1) p(w2)




Discriminant Functions for
Multivariate Normal Density

e Case X = X
Covariance of al

Geometrically, t
clusters of equa

classes are identical but arbitrary
ne samples fall in hyper-ellipsoidal

size and shape

The discriminant function:

gi(x) = =10 — p)"E7H (x — i) + Inp(w)
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