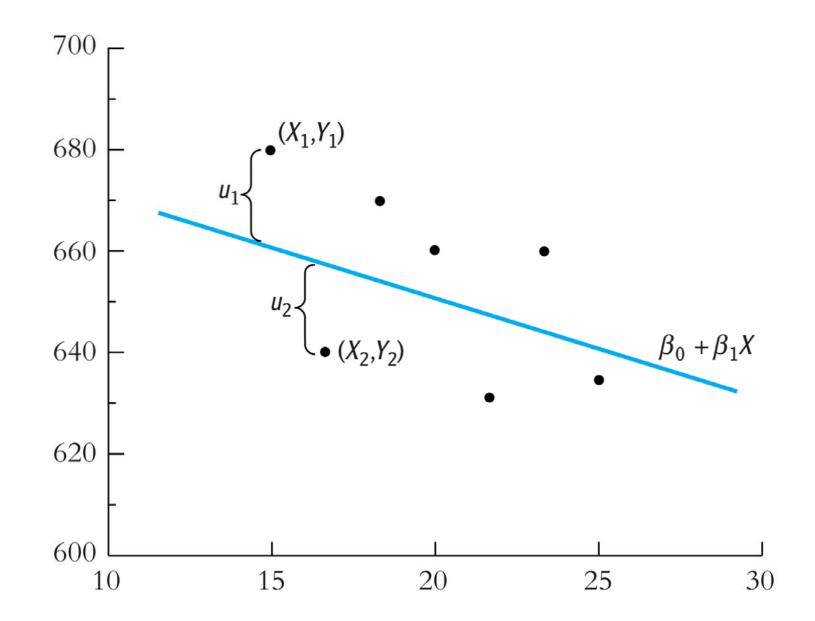
Economics 1123 Lecture #3 Tuesday September 26, 2006

# Linear Regression with a Single Regressor, ctd.

### <u>Outline</u>


- A. Measures of fit
- B. The OLS sampling distribution
- C. Hypothesis tests and confidence intervals
- D. Misc. additional topics

## The Population Linear Regression Model (Review)

$$Y_i = \beta_0 + \beta_1 X_i + u_i, i = 1, ..., n$$

- X is the *independent variable* or *regressor*
- *Y* is the *dependent variable*
- $\beta_0 = intercept$
- $\beta_1 = slope$
- The *population regression line* is  $E(Y|X) = \beta_0 + \beta_1 X$
- $u_i$  = the regression *error*
- The regression error consists of omitted factors, or possibly measurement error in the measurement of *Y*. In general, these omitted factors are other factors that influence *Y*, other than the variable *X*

## In a picture:



3-3

## **Measures of Fit of an Estimated Regression Line**

OLS divides the observation  $Y_i$  into two parts: a part that is "explained" by  $X_i$  (the predicted value) and a part that is not (the residual):

$$Y_i = \hat{Y}_i + \hat{u}_i = \text{OLS prediction} + \text{OLS residual}$$

Two important measures of fit of a regression are:

- 1. The *regression*  $\mathbb{R}^2$
- 2. The standard error of the regression (SER)

The *regression*  $\mathbb{R}^2$  is the fraction of the sample variance of  $Y_i$  "explained" by the regression.

- $Y_i = \hat{Y}_i + \hat{u}_i = \text{OLS prediction} + \text{OLS residual}$
- $\Rightarrow$  sample var (Y) = sample var  $(\hat{Y}_i)$  + sample var  $(\hat{u}_i)$  (why?)
- $\Rightarrow$  total sum of squares = "explained" SS + "residual" SS

Definition of 
$$R^2$$
:  

$$R^2 = \frac{ESS}{TSS} = \frac{\sum_{i=1}^{n} (\hat{Y}_i - \overline{\hat{Y}})^2}{\sum_{i=1}^{n} (Y_i - \overline{Y})^2}$$

- $R^2 = 0$  means...
- $R^2 = 1$  means...
- $0 \le R^2 \le 1$
- For regression with a single *X*, *R*<sup>2</sup> = the square of the correlation coefficient between *X* and *Y*

*The Standard Error of the Regression (SER)* and the *Root Mean Square Error (RMSE)* of the residual measure the spread of the distribution of *u*.

$$SER = \sqrt{\frac{1}{n-2} \sum_{i=1}^{n} (\hat{u}_{i} - \overline{\hat{u}})^{2}} = \sqrt{\frac{1}{n-2} \sum_{i=1}^{n} \hat{u}_{i}^{2}}$$
$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \hat{u}_{i}^{2}}$$

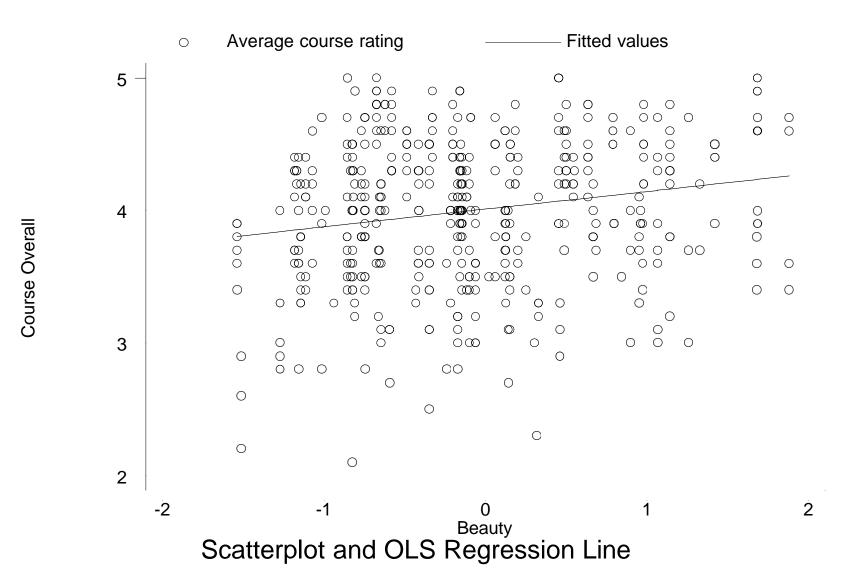
Notes:

- for the OLS residual,  $\overline{\hat{u}} = \frac{1}{n} \sum_{i=1}^{n} \hat{u}_i = 0$ .
- units...
- d.f. adjustment...

# Example of the $R^2$ and the SER:

# **Teaching evaluations and instructor "beauty"**

### Data:


Y = teaching evaluations (course overall), scale of 1-5 X = standardized "Beauty" ratings of instructors (other variables too – we'll look at them later) Sample: n = 463 courses at U.T. Austin, academic years 2000-2002

(Source: Hamermesh and Parker (2005))

# **Summary statistics**

| Variable     | Obs | Mean     | Std. Dev. | Min       | Max      |
|--------------|-----|----------|-----------|-----------|----------|
| courseeval~n | 463 | 3.998272 |           | 2.1       | 5        |
| profevalua~n | 463 | 4.17473  | •         | 2.3       | 5        |
| btystdave    | 463 |          | •         | -1.538843 | 1.881674 |
| lower        | 463 | •        | •         | 0         | 1        |
| tenured      | 463 | •        | •         | 0         | 1        |
| female       | 463 | •        | •         | 0         | 1        |
| nonenglish   | 463 | •        | •         | 0         | 1        |
| tenuretrack  | 463 |          | •         | 0         | 1        |

#### Scatterplot of "course overall" ratings v. Beauty:



*correlation coefficient* = 0.189

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如 要下载或阅读全文,请访问: <u>https://d.book118.com/10702502415</u> <u>1006040</u>