专题 03 光学实验

【考点分析】

章节	考点	考试题型	难易度
小切在	平面镜成像实验探究	实验题	**
光现象	光沿直线传播、光的反射、光的折射的规律探究	实验题	**
凸透镜	凸透镜成像实验探究	实验题	**

【知识点总结+例题讲解】

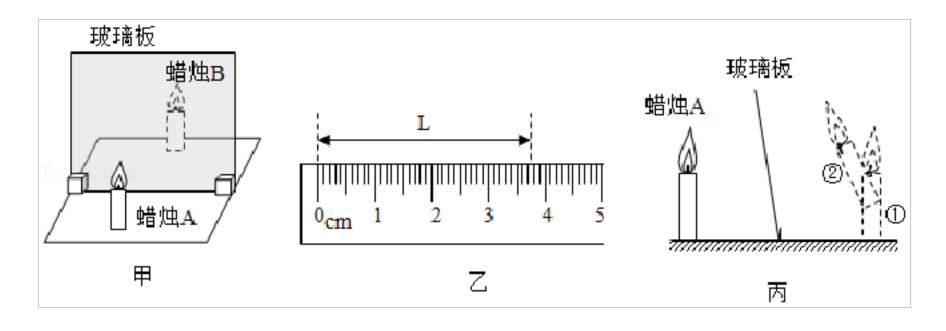
- 一、平面镜成像实验:
- 1. 实验器材: 平板玻璃(透明)、两支相同的蜡烛、白纸、刻度尺、笔;
- 2. 实验环境: 光线暗一点;
- 3. 注意事项:玻璃板垂直桌面、玻璃板薄一点;

- 4. 平面镜成像的原理: 光的反射:
- 5. 平面镜成像特点: 等大、等距、垂直、虚像;
- (1) 正立的、等大的、虚像;
- (2) 像、物分居平面镜两侧;
- (3) 像、物到镜面的距离相等: u=v;
- (4) 像、物的连线与镜面垂直; (像与物关于平面镜对称)
- (5) 物体靠近平面镜,像也靠近平面镜,靠近的速度大小相等;
- (6) 注意: 像的大小与平面镜的大小、位置、形状, 以及物体到平面镜的距离等无关。
- 6. 平面镜成像实验考点总结:
- (1) 选择玻璃板代替平面镜进行实验的目的是 便于准确确定像的位置 ;
- (2) 在探究活动中对玻璃板放置的要求是<u>竖直放置</u>; 若玻璃板没有竖直放置: <u>玻璃板后面的蜡烛与前面蜡烛的像不能重合</u>;
- (3) 选取两段完全相同的蜡烛的目的是为了 比较像与物的大小 关系;
- (4) 实验中使用刻度尺,是为了_测量像与物到玻璃板的距离_;
- (5) 移去后面的蜡烛 B, 并在其所在位置上放一光屏, 则光屏上 不能 接收到蜡烛烛焰的像;
- (6) 小明将蜡烛逐渐远离玻璃板时,它的像_大小不变;
- (7) 为便于观察, 该实验最好在 较黑暗 环境中进行;
- (8) 采用透明玻璃板代替平面镜,虽然成像不如平面镜清晰,但却能在观察到 A蜡烛像的同时,也 能观察到 B蜡烛, 巧妙地解决了确定像的位置和大小的问题;

(9) 点燃 A蜡烛,小心地移动 B蜡烛,直到与 A蜡烛的像完全重合为止,这时发现像与物的<u>大小</u>相等;

若直接将蜡烛放在直尺上进行实验,进一步观察 A、B两支蜡烛在直尺上的位置

- (10) 观察 A蜡烛的像时,会发现两个几乎重叠的像,这是由于玻璃板的两个面反射各成一个像; 这两个像的间距为两倍玻璃板的距离;实验应该选用<u>较薄的</u>玻璃板,这是为了<u>使玻璃板</u> 两个面反射成的像尽量重叠,便于准确确定像的位置;
- (11) 多次进行实验的目的: 寻找普遍规律 。
- 【例题 1】用如图所示装置探究平面镜成像的特点。把一张大纸铺在桌面上,纸上竖立一块玻璃板,沿着玻璃板在纸上画一条直线 OO, 代表平面镜的位置。
- (1) 把一支点燃的蜡烛放在玻璃板前面的适当位置,再拿一支外形相同但不点燃的蜡烛,竖立着在玻璃板的后面移动,当移动到某位置时,发现该蜡烛与点燃蜡烛的像完全重合。此说明平面镜成的像____。(选填序号)


A.是虚像

- B.大小与物体的大小相等
- C.和物体到平面镜的距离相等,和物体连线与镜面垂直
- (2) 移动点燃的蜡烛分别到 A, B, C点,重复(1)中的操作,记录与点燃蜡烛的像重合的 A_1 、 B_1 、C点,用直线将 A, B, C和 A_1 、 B_1 、C1分别连接成三角形,将纸沿 OO1对折,发现两个三角形几乎重合。此说明平面镜成的像____。(选填序号)

A.是虚像

- B.大小与物体的大小相等
- C. 和物体到平面镜的距离相等, 和物体连线与镜面垂直
- (3) 有同学在实验过程中,观察到点燃蜡烛的像好像总是"悬浮"在纸面上方。造成该现象的原因可能是____。(选填序号)
 - A.玻璃板太厚
 - B.玻璃板未垂直桌面,且偏离点燃蜡烛一侧
 - C.玻璃板未垂直桌面,且偏向点燃蜡烛一侧

【变式 2】利用图甲装置探究"平面镜成像的特点"。

- (1) 在水平桌面上铺一张白纸,再将玻璃板竖立在白纸上,把点燃的蜡烛 A放在玻璃板前面,拿(选填"点燃"或"未点燃") 的蜡烛 B 竖立在玻璃板后面移动,直到看上去蜡烛 B 跟完全重合。
- (2)为了探究平面镜成像的虚实,将一张白卡片竖直放在蜡烛 B所在的位置,应在玻璃板____(选填"前"或"后")面观察白卡片上是否有 A的像。
- (3) 图乙是小明某次测量蜡烛 A到平面镜的距离为_____cm; 将蜡烛靠近玻璃板一些,像的大小将_____(选填"变大"、"变小"或"不变")。
- (4) 若将玻璃板向左倾斜,如图丙所示,观察到蜡烛A的像大致位置在图中的_____(选填①或②)处。

二、凸透镜成像:

- 1. 实验器材: 光具座、凸透镜、蜡烛、光屏;
- 2. 实验原理: 光的折射:
- (1) 实验注意:实验时点燃蜡烛,使烛焰、凸透镜、光屏的中心大致在同一高度; 目的:使烛焰的像成在光屏中央;

- (2) 若在实验时, 无论怎样移动光屏, 在光屏都得不到像, 可能得原因有:
 - ①蜡烛在焦点以内:
 - ②烛焰在焦点上;
 - ③烛焰、凸透镜、光屏的中心不在同一高度;
 - ④蜡烛到凸透镜的距离稍大于焦距,成像在很远的地方,光具座的光屏无法移到该位置;
- 3. 实验结论: (凸透镜成像规律)

F分虚实, 2f 大小, 实倒虚正, 具体见下表:

物距	倒正	大小	虚实	像距	应用
u>2f	倒立	缩小	实像	f <v<2f< td=""><td>照相机</td></v<2f<>	照相机
u=2f	倒立	等大	实像	v=2f	
f <u<2f< td=""><td>倒立</td><td>放大</td><td>实像</td><td>v>2f</td><td>投影仪</td></u<2f<>	倒立	放大	实像	v>2f	投影仪
U=f		不成像		获得平行光	
u <f< td=""><td>正立</td><td>放大</td><td>虚像</td><td>v>u</td><td>放大镜</td></f<>	正立	放大	虚像	v>u	放大镜

- 结论:①当物距大于一倍焦距时,成_实_像,当物距小于1倍焦距时,成_虚_像;
 - ②当物距大于2倍焦距时,成缩小像,当物距小于2倍焦距时,成放大像;
 - ③无论成什么像,当物体靠近焦点时,所成的像变_大_,且像距变_大_;
 - ④所有的虚像都是_____; 所有的实像都是______;

⑤成放大的像: v > u ; 成缩小的像: v < u 。

【例题 2】小红同学在探究凸透镜成像规律的实验中:

【例题 3】在"探究凸透镜成像规律"的实验中:

(1) 如图在光具座上依次摆放蜡烛、凸透镜、光屏,并调整它们的高度,使的中心、透镜
中心和光屏中心大致在同一高度。
(2) 上图所示情景时光屏上恰好有清晰的像,此时的像距是cm,这个时候所成的像与实际
生活中(选填"照相机""投影仪"或"放大镜")的成像原理相同;如果此时将蜡烛
和光屏位置对调,光屏上(选填"能"或"不能")出现清晰的像。
(3) 实验过程中, 燃烧的蜡烛在不断缩短, 导致光屏上的像不在成在光屏中央, 为了使烛焰的像
能成在光屏中央,可以进行的操作是。
变式 2】某同学用光具座、凸透镜、蜡烛、光屏和刻度尺等实验器材,探究"凸透镜成像的规律"。
(1) 为了测量凸透镜的焦距, 让一束平行于主光轴的光射向凸透镜, 移动光屏, 直到光屏上出现
最小、最亮的光斑,用刻度尺测出光斑到凸透镜中心的距离,如图甲所示。凸透镜焦距为
cm_{\circ}
移动光屏,出现图乙所示现象(成像清晰)。为使像呈现在光屏中央,应将光屏向调
节。
(3) 保持凸透镜位置不变, 调整烛焰中心、透镜中心和光屏中心在同一高度。将蜡烛移至 34cm
刻度线处,移动光屏,直到光屏上再次出现清晰的像,该像是倒立、的实像。保持凸
透镜位置不变,将蜡烛继续向左移动 10.0cm,仍要在光屏上得到清晰的像,光屏应向移
动一段距离。

- (1)如图 1 是小明确定凸透镜焦距时所做的实验,两束平行于主光轴的光线,过凸透镜都照射到A点,由此可以测得该凸透镜的焦距为____cm。
- (2) 请在图 2 中画出蜡烛 AB发出的两条光线通过透镜后的光线,此时蜡烛 AB通过凸透镜成的像是_____(选填"放大"或"缩小")_____(选填"正立"或"倒立")的。这个像用光屏_____(填"能"或"不能")接收到。
- (3) 当实验装置如图 3 所示摆放时,在光屏上得到了烛焰清晰的像,此时的像是 _____(选填"放大"或"缩小")的____(选填"虚像"或"实像")。
- (4) 在图 3 所示实验中,保持透镜位置不变,将蜡烛移至 35cm刻度处,为了在光屏上再次成清晰的像,应将光屏____(选填"靠近"或"远离")凸透镜。

【变式 3】利用光具座以及蜡烛、凸透镜、光屏等器材,可进行"探究凸透镜成像规律"的实验。

- (1) 实验时,首先在光具座上放置实验器材,若光具座 A处放置蜡烛(如图所示),则 C处应放置____(选填"凸透镜"或"光屏"。器材正确放置后,还应对其进行调整,使烛焰和光屏的中心位于凸透镜的_____上。
- (2) 实验后,可得出凸透镜成像规律。根据成像规律判断下列说法,说法正确的是。
 - A. 若凸透镜的焦距为 10cm,则烛焰距离凸透镜 30cm时,可在光屏上成放大的像
 - B. 实验过程中, 蜡烛因燃烧而变短, 则烛焰在光屏上的像会下移
 - C. 若烛焰朝着凸透镜方向前后不断晃动,则光屏上仍能观察到清晰的烛焰像
 - D. 若烛焰在光屏上成缩小的像,则光屏到凸透镜的距离小于烛焰到凸透镜的距离
- (3) 某物理兴趣小组在探究凸透镜成像规律后,得到了如下数据:

实验序号	物距 u/cm	焦距 f/cm	像的性质	像距 v/cm
1	12	10	倒立放大实像	60
2	14	10	倒立放大实像	35
3	15	10	倒立放大实像	30
4	30	10	倒立缩小实像	15
5	30	12	倒立缩小实像	20
6	30	15	倒立等大实像	30

下列对表中数据的分析,错误的是____。

- A. 当凸透镜的焦距相同,物距不同时,所成的像有可能相同
- B. 当物距相同, 凸透镜的焦距越大时, 像距越大
- C. 当物距相同, 凸透镜的焦距不同时, 所成像的性质有可能相同
- D. 当凸透镜的焦距相同,且成放大实像时,像距与物距之和随物距的增大而减小
- (4) 将蜡烛置于凸进镜一倍焦距处,结果仍能观察到烛焰放大的像,这是为什么?

三、其他光学实验:

- 1. 小孔成像: 倒立的、实像;
- (1) 成像特点: 倒立的实像;
- (2) 成像与小孔的形状: 无关;
- (3) 成像原理: 光沿直线传播:
- 【例题 4】如图所示是小明用易拉罐制成的简易针孔照相机:
 - (1) 使用针孔照相机时,圆筒上应使用_____(选填"透明"、"不透明"或"半透明")塑

- (2) 小明从实验室借来用发光二极管制成的"F"字样光源,如图甲所示,将"F"字样光源、简易针孔照相机按图乙所示位置放好,小明观察到塑料膜上所成的像是图丙中的_____(填序号),这个像是 (选填"实像"或"虚像"),此成像的原理是 。
- (3) 保持 "F" 字样光源的位置不变,将易拉罐靠近发光的 "F" 小明观察到塑料膜上所成的像的会_____(选填"变大"、"变小"或"不变")。
- (4)当"F"字样光源顺时针旋转,小明观察到塑料膜上所成的像会_____(选填"顺"或"逆")时针旋转。
- (5)小华在实验中在易拉罐的底部扎了两个小孔,则在半透明膜上可以观察到的"F"像有____(选填"一"或"二")个。
- 【变式 4】如图所示某兴趣小组在空易拉罐的底部中央戳个小圆孔,将顶部剪去后,蒙上一层塑料薄膜,制作成一个简易针孔照相机。如图甲所示,将其水平放置,在左侧固定一支点燃的蜡烛,可在塑料薄膜上看到烛焰的像。

- (2) 若只将小圆孔改为三角形小孔,则像的形状 (选填"改变"或"不变")。
- (3) 晴天的正午时分,走在滨江公园的树林里,小明看到阳光透过树叶的缝隙在地上留下许多大小不同的圆形光斑(如图乙所示),圆形光斑大小不一原因是_____。
- 2. 光的反射定律: _三线同面、_ 法线居中、_ 两角相等、_ 光路可逆;

- (1) 三线共面: 反射光线与入射光线、法线在同一平面上;
- (2) 法线居中: 反射光线和入射光线分居于法线的两侧;
- (3) 两角相等: 反射角=入射角;
- (4) 光路可逆: 光的反射过程中光路是可逆的;

【例题 5】为了探究光反射时的规律,小明进行了如图所示的实验。

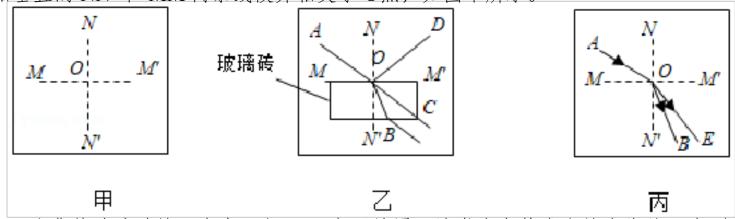
10 .6	E	N	F	E5.64
光线			-/	反射 光线
		40°	/	
Jyeoo.	纸版A	W	纸版B	
		0		

入射角	30°	40°	60°
反射角	30°	40°	60°

- (1) 实验时从光屏前不同的方向都能看到光的传播路径, 这是因为光在光屏上发生了_____反射;
- (2) 若将B板向后折转一定的角度,则在B板上____("能"或"不能")看到反射光,此 时反射光线和入射光线_____("在"或"不在")同一平面内;
- (3)如果让光线逆着 OF的方向射向镜面,会发现反射光线沿着 OE方向射出,这表明:_____;
- (4) 为了研究反射角与入射角之间的关系,实验时应进行的操作是____;
 - A 沿 ON前后转动板 A B . 沿 ON前后转动板 B
 - C. 改变光线 OF与 ON的夹角 D . 改变光线 EO与 ON的夹角
- (5) 表中记录了光做以不同角度入射时对应的反射角,分析表中数据可得:反射角 入射 角(用汉字填写这两个角的大小关系),若一束光与镜面的夹角70°射到镜面上,则对应的 反射角为 。

【变式 5】在"探究光反射的规律"时,小李进行了如图甲所示的实验。

- (1) 平面镜平放在水平桌面上,一块标有刻度的白色_____(选填"粗糙"或"光滑")硬 纸板与平面镜保持_____,如图甲所示。
- (2) 实验时,将一束光贴着纸板 P 沿 EO射到镜面上 O 点,纸板 Q 上会显示出反射光束 OF。接着 将纸板 Q绕 ON向前或向后翻折,则纸板 Q上____(选填"能"或"不能")显示出反射 光束,由此说明反射光线、入射光线与法线在同一平面内,在纸板 Q绕 ON向后翻折的过程


中, 反射光线的位置 (选填"改变"或"不变")。

- (3) 若保持平面镜位置不变,将纸板向后倾斜一个角度(如图乙),入射光线仍能呈现在纸板上, 且沿 EO方向入射到平面镜的 O点,此时_____(选填"能"或"不能")在纸板上看到反射 光线,此时反射光线、入射光线和法线_____(选填"在"或"不在")同一平面内。
- (4) 在硬纸板上描出入射光线 EO和反射光线 OF, 并测出反射角和入射角,改变入射角大小多次实验后将测得的数据记录在表格中,可得到的实验结论是_____。

3. 光的折射规律:

- (1) 三线共面: 折射光线、入射光线和法线都在同一个平面内:
- (2) 法线居中: 折射光线和入射光线分居法线两侧; (反射光线和折射光线在法线同侧)
- (3) 光路可逆: 在折射现象中, 光路是可逆的;
- (4) 入射角增大, 折射角也随之增大;
- (5) 在光的折射现象中,介质的密度越小,光速越大,与法线形成的角越大:
 - ①光从空气斜射入水中或其他介质中时,折射光线向法线方向偏折: (折射角<入射角);
 - ②光从水或其他介质中斜射入空气中时,折射光线向界面方向偏折: (折射角>入射角);

【例题 6】光从空气斜射入水和玻璃时都会发生折射现象,但是水和玻璃的折射情况会相同吗?为了探究这个问题,小华选择了光屏、透明玻璃砖、水槽、激光电筒等器材进行实验。他在光屏上画出互相垂直的 NN 和 MM 两条线段并相交于 O点,如图甲所示。

- (3) 小华最终在光屏上记录下了如丙所示的光路图(OE为水中的折射光线)通过分析光路,你认为玻璃和水这两种介质对光的偏折能力较强的是____。
- (4) 若激光相同的入射角分别从玻璃和水中斜射入空气中,则_____射出的折射光线更远离法线。

【变式 6】在"初识光的折射现象"和"探究光的折射规律"实验中。

- (1) 如图甲所示,小明将一束激光射至 P 点,形成一个光斑,向水槽内慢慢注水,水槽底部光斑的位置将_____(选填"向左移动"、"向右移动"或"不动"),这说明光从空气斜射入水中时,传播方向会发生偏折。
- (2) 如图乙所示,小明继续探究"光从空气射入水中时的折射特点"。他使用可折转的光屏,是为了研究折射光线、入射光线和法线是否____。
- (3) 如图丙,他将光沿着 AO方向射向水面上的 0点,光在水中沿着 OB方向射出,再将光沿 BO 方向射入,目的是为了研究折射时光路____。

1.	起床后, 你开始洗	漱, 洗完脸照镜子,	镜子里出现了你的像	。关于平面镜成像,下列说法正确的
	是()			
	A 成的像是实像			
	B. 成像大小与物体	到镜面的距离有关		
	C. 成像原理是光的	反射		
	D. 成像原理是光的	折射		
2.	如图, 物体 S 在平	面镜中所成的像为:	5'。若在镜后放置一块	P透明玻璃 AB, 则像 S' 将()
	A 变亮			
	B. 变暗			
	C. 不变			
	D. 偏离原位置			
3.	小芳站在学校大厅	衣冠镜前 2m处,她	在镜中的像与她相距	()
	A 1m	B. 2m	C. 3m	D. 4m
4.	小明身高 1.5m,站	在平面镜前 2m处,	他以 0.1m/s 的速度运	远离平面镜, 2s 后, 他的像到他的距
	离和像的大小变化技	苗述正确的是()	
	A. 1.5m, 像变大		B. 4.4m, 大小	不变
	C. 2.2m, 大小不变		D. 2m, 像变小	
5.	宁远文庙荷花池里	"小荷才露尖尖角,	早有蜻蜓立上头",	若一蜻蜓立于距水面 0.5m 处的荷尖
	上,池中水深 1m,	则蜻蜓在水中的像员	巨水面 ()	
	A 1m	B. 1.5m	C. 0.5m	D. 3m
6.	临沂市文化公园是:	我市一道亮丽的风景	景线。1.5m 深的荷花	池内,一只立于荷尖上的蜻蜓距水面
	0.6m(如图), 蜻蛉	延在水中的像()	
	A 因光的折射而形	成		
	B. 是比蜻蜓略小的	虚像		
	C. 在水面下 0.9m %			
	D. 与蜻蜓相距 1.2n	n		
7.	在一个水深为 20m	的湖面的正上方,	有一名跳伞运动员正从	高 40m的空中以 5m/s 的速度匀速下
	降,关于他在水中,	成像的情况,下列名	-种说法正确的是()
	A 运动员在水中的	像始终只能在水面	下 20m处	
	B. 运动员下降到 20	0m高度时才能在水	中形成像	
	C. 运动员在水中始	悠能成像,像以10	m/s 的速度向水面靠抗	定
	D. 运动员在水中始	悠能成像,像以10	m/s 的速度向他本人拿	靠拢,且像的大小不变
8.	如图所示是"科学	探究:凸透镜成像"	的实验操作情景,下	列说法不正确的是 ()

- A. 从图甲中可知该透镜的焦距为 10.0cm
- B. 如图乙所示, 在蜡烛和透镜之间放入度数合适的近视镜片, 光屏上可以得到清晰的像
- C. 如图乙所示,将蜡烛移至30cm处,光屏上可得到等大的实像
- D. 如图乙所示,将蜡烛移至45cm处,移动光屏可以得到放大的实像
- 9. 在做"探究凸透镜成像规律"的实验中,小敏所在的小组利用如图甲所示的装置,测出凸透镜的 焦距,正确安装并调节实验装置后,在光屏上得到一个清晰的像,如图乙所示。下列说法中正确 的是()

- A. 由图甲可知该凸透镜的焦距是 40.0cm
- B. 烛焰在如图乙所示的位置时, 成像特点与照相机成像特点相同
- C. 若烛焰从光具座 30.0cm 刻线处向远离凸透镜方向移动, 烛焰所成的像将逐渐变小
- D. 若烛焰从光具座 40.0cm 刻线处向靠近凸透镜方向移动, 烛焰所成的像将逐渐变大
- 10. 当蜡烛距凸透镜 40 厘米时,在离该透镜 30 厘米的光屏上能成一个清晰的烛焰像;如果蜡烛到该透镜的距离为 30 厘米时,则在光屏上()
 - A. 一定成一个放大的像
- B. 一定成一个缩小的像
- C. 可能成一个正立的像

- D. 可能不成像
- 11. 在"探究平面镜成像特点"的实验中,小明选择的实验器材有:薄玻璃板、两支蜡烛、刻度尺、火柴、白纸等。

请回答下列问题:

- (1) 实验器材选用薄玻璃板而非平面镜的原因是______。
- (2) 实验时,小明将白纸对折,如图甲所示,铺在水平桌面上,沿折痕画线作为玻璃板底边所在的位置,在实验过程中应始终保持其与纸面_____。
- (4) 在完成步骤(3) 后小明发现,像和蜡烛位置的连线垂直于玻璃板,结合(3) 的结论,小明

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/10533102220
0011101