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— In this paper, a feedback linearization-based con- 

troller with a high order sliding mode observer running parallel is 

applied to a quadrotor unmanned aerial vehicle. The high order 

sliding mode observer works as an observer and estimator of the 

effect of the external disturbances such as wind and noise. The 

whole observer-estimator-control law constitutes an original 

approach to the vehicle regulation with minimal num- ber of 

sensors. Performance issues of the controller-observer are 

illustrated in a simulation study that takes into account parameter 

uncertainties and external disturbances. 

I. INTRODUCTION 

Small UAV Quadrotors are designed to easily move in 

different environments while following specifi ks and 

providing good performance as well as a great autonomy. 

Affected by aerodynamic s, the quadrotor dynamics is 

nonlinear, multivariable, and is subject to parameter un- 

certainties and external disturbances. In turn, controlling of the 

quadrotor is required i) to meet the stability, robustness and 

desired dynamic properties; ii) to be able to handle 

nonlinearity; iii) to be adaptive to changing parameters and 

environmental disturbances. 

Main difficulties of the motion control are thus para- metric 

uncertainties, unmodeled dynamics, and external dis- turbances 

[1], which result in further complication in the design of 

controllers for actual systems [3]. However various advanced 

control methods such as feedback linearization method [4], 

have been developed to meet reasing demands on the 

performance, however, they required full information on the 

state that may limit their practical utility. Indeed, even if all 

the state measurements are possible they are typically corrupted 

by noise. Moreover, the reased number of sensors makes the 

overall system more complex in imple- mentation and 

expensive in realization. In order to decrease the number of 

sensors in [5] the use only a rotational motion sensors is 

proposed in order to control tilt angles and evaluate 

translational motion. However, aerodynamic s still cause 

difficulties to overcome. Thus motivated, an observer-based 

feedback design becomes an attractive approach to robotic 

control. 

The use of state observers appears to be useful in not 

only system monitoring and regulation but also detecting as 

well as identifying failures in dynamic systems. Almost all 

observer designs are based on the mathematical model of the 

nt, is no linearized and has consequently have uncertain 

inputs. From the other hand the relative degree of the model 

with respect to the known outputs heavily dependent on the 

accuracy of the mathematical model of the nt [6]. 

So the main motivation of the paper are: 

Feedback linearization controller of the quadrotor needs • 

the third derivatives of measured states in order to 

reconstruct tilt angles and to fulfill the controller re- 

quirement. 

When quadrotor is subjected to external disturbances, 

it would be suitable to compensate them through an 

observer based controller. 

The observers should be robust with respect to external 

perturbations (wind and noise). 

Observers based identification perturbation allow to re- 

duce the number of sensors required for control design. 

• 

• 

• 

Methodology. The relative degree of the UAV Quadrotors 

model w.r.t. to unknown inputs is more than one and the 

standard necessary and sufficient conditions for observation of 

the systems with unknown inputs are not fulfilled [2]. To solve 

the problem of observation for UAV Quadrotors the higher 

order sliding mode observers will be used. 

Sliding mode observers (see, for example, the correspond- 

ing chapters in the textbooks [13], [22], and the recent tutorials 

[7], [9], [10]) are widely used due to their attrac- tive 

features: a) insensitivity (more than robustness!) with respect 

to unknown inputs; b) possibilities to use the values of the 

equivalent output injection for the unknown inputs 

identification; c) finite time convergence to exact values of the 

state vectors. In [14], [22] and [8] a step by step form of sliding 

mode observers were proposed. Such observers based on the 

transformation of a given system to a block observable form 

and the sequential estimation of each state by using of the 

value of the equivalent output injection. On the one hand, this 

schemes allows to formulate some observability conditions for 

linear time invariant systems with unknown inputs. Such 

conditions were formulated in [22], [8] for the scalar case. 

From the other hand, realization of this scheme caused 

obligatory filtration due to the non-idealities. 

In [18], [19] and [21] a robust exact arbitrary order differen- 

tiator was designed ensuring finite time convergence to the 

values of the corresponding derivatives, and applications of 

higher order sliding algorithms were considered. 

Basing on the second-order sliding-mode super twisting al- 

gorithm in [20].an observer for uncertain mechanical systems 

with only position measurements was proposed ensuring best 

possible approximation for the velocities. 
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Feedback Linearization and High Order Sliding Mode Observer For A
Quadrotor UAV

A. Benallegue, A. Mokhtari, and L. Fridman

— In this paper, a feedback linearization-based con-
troller with a high order sliding mode observer running parallel
is applied to a quadrotor unmanned aerial vehicle. The high
order sliding mode observer works as an observer and estimator
of the effect of the external disturbances such as wind and
noise. The whole observer-estimator-control law constitutes an
original approach to the vehicle regulation with minimal num-
ber of sensors. Performance issues of the controller-observer
are illustrated in a simulation study that takes into account
parameter uncertainties and external disturbances.

I. INTRODUCTION

Small UAV Quadrotors are designed to easily move in
different environments while following specifi ks and
providing good performance as well as a great autonomy.
Affected by aerodynamic s, the quadrotor dynamics
is nonlinear, multivariable, and is subject to parameter un-
certainties and external disturbances. In turn, controlling of
the quadrotor is required i) to meet the stability, robustness
and desired dynamic properties; ii) to be able to handle
nonlinearity; iii) to be adaptive to changing parameters and
environmental disturbances.

Main difficulties of the motion control are thus para-
metric uncertainties, unmodeled dynamics, and external dis-
turbances [1], which result in further complication in the
design of controllers for actual systems [3]. However various
advanced control methods such as feedback linearization
method [4], have been developed to meet reasing demands
on the performance, however, they required full information
on the state that may limit their practical utility. Indeed,
even if all the state measurements are possible they are
typically corrupted by noise. Moreover, the reased number
of sensors makes the overall system more complex in imple-
mentation and expensive in realization. In order to decrease
the number of sensors in [5] the use only a rotational motion
sensors is proposed in order to control tilt angles and evaluate
translational motion. However, aerodynamic s still cause
difficulties to overcome. Thus motivated, an observer-based
feedback design becomes an attractive approach to robotic
control.

The use of state observers appears to be useful in not
only system monitoring and regulation but also detecting as
well as identifying failures in dynamic systems. Almost all
observer designs are based on the mathematical model of the
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nt, is no linearized and has consequently have uncertain
inputs. From the other hand the relative degree of the model
with respect to the known outputs heavily dependent on the
accuracy of the mathematical model of the nt [6].

So the main motivation of the paper are:

• Feedback linearization controller of the quadrotor needs
the third derivatives of measured states in order to
reconstruct tilt angles and to fulfill the controller re-
quirement.

• When quadrotor is subjected to external disturbances,
it would be suitable to compensate them through an
observer based controller.

• The observers should be robust with respect to external
perturbations (wind and noise).

• Observers based identification perturbation allow to re-
duce the number of sensors required for control design.

Methodology. The relative degree of the UAV Quadrotors
model w.r.t. to unknown inputs is more than one and the
standard necessary and sufficient conditions for observation
of the systems with unknown inputs are not fulfilled [2]. To
solve the problem of observation for UAV Quadrotors the
higher order sliding mode observers will be used.

Sliding mode observers (see, for example, the correspond-
ing chapters in the textbooks [13], [22], and the recent
tutorials [7], [9], [10]) are widely used due to their attrac-
tive features: a) insensitivity (more than robustness!) with
respect to unknown inputs; b) possibilities to use the values
of the equivalent output injection for the unknown inputs
identification; c) finite time convergence to exact values of
the state vectors. In [14], [22] and [8] a step by step form of
sliding mode observers were proposed. Such observers based
on the transformation of a given system to a block observable
form and the sequential estimation of each state by using
of the value of the equivalent output injection. On the one
hand, this schemes allows to formulate some observability
conditions for linear time invariant systems with unknown
inputs. Such conditions were formulated in [22], [8] for the
scalar case. From the other hand, realization of this scheme
caused obligatory filtration due to the non-idealities.
In [18], [19] and [21] a robust exact arbitrary order differen-
tiator was designed ensuring finite time convergence to the
values of the corresponding derivatives, and applications of
higher order sliding algorithms were considered.

Basing on the second-order sliding-mode super twisting al-
gorithm in [20].an observer for uncertain mechanical systems
with only position measurements was proposed ensuring best
possible approximation for the velocities.
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Ma ontribution. In the paper the model of UAV Quadro- 

tor and feedback linearization-based controller is suggested. To 

realize this with a high order sliding mode observer running 

parallel is applied to a quadrotor unmanned aerial vehicle. The 

high order sliding mode observer works as an observer and 

estimator of the effect of the external disturbances such as wind 

and noise. The whole observer- estimator-control law 

constitutes an original approach to the vehicle regulation with 

minimal number of sensors. Performance issues of the 

controller-observer are illustrated in a simulation study that 

takes into account parameter uncertainties and external 

disturbances UAV Quadrotor is suggested. To realize the 

control algorithm and identify the uncertainties a  order 

sliding mode observer based on  order differentiator [21] 

is suggested This observer converge in finite time ensuring the 

identification of the effect of the external disturbances such as 

wind and noise. The whole observer-estimator-control law 

constitutes an original approach to the vehicle regulation with 

minimal number of sensors. Performance issues of the 

controller-observer are illustrated in a simulation study that 

takes into account parameter uncertainties and external 

disturbances. 

Paper structure.The rest of the paper is outlined as follows. 

UAV dynamics is deduced in section 2. The inner outer 

controller is developed in section 3. The observer design is 

presented in section 4. Simulation results are given in section 

5. Section 6 yields some conclusions. 

with S. = sin(.), C. = cos(.), T. = tan(.), Se. = sec(.) 

This matrix, as shown, depends only on (ψ, θ, φ) and it is 

invertible if the above conditions on (ψ, θ, φ) hold. 

Similarly, the time derivative of the position (x0, y0, z0) 

is given by: 

col(ẋ0, y˙0, z˙0) = V0 (3) 

where V = col(u ,v ,w ) is the absolute velocity of 0 0  0 0 

the UAV expressed with respect to an earth fixed inertial 

reference frame. Let V = col(u, v, w) be the absolute velocity 

of the UAV expressed in a body fixed reference frame. Then V 

and V0 relate according to 

V0 = R(ψ, θ, φ)V 

where R(ψ, θ, φ) is the rotation matrix given by 
⎡ ⎤ 

CψSθSφ − CφSψ CφCψSθ + SφSψ CθCψ 

R = ⎣ CθSψ SθSφSψ + CφCψ CφSθSψ − CψSφ ⎦ 

−Sθ CθSφ CθCφ 

Equations (1) and (3) are the kinematic equations. The 

dynamic equations are now expressed. Using the Newton’s 

laws about the center of mass one obtains the 

equations for the miniature four rotors helicopter 

dynamic 

mV˙
0 =

  
Fext (4) 

J ω˙ = −ω × Jω +
  

Text (5) 

where the symbol × denotes the usual vector product, m is 
II.  QUADROTOR DYNAMICS 

The quadrotor is composed of 4 rotors. Two diagonal motors 

(1 and 3) are running in the same direction whereas the others 

(2 and 4) in the other direction to eliminate the anti-torque. On 

varying the rotor speeds altogether with the same ty the 

lift s will change affecting in this case the altitude z of the 

system and enabling vertical take-off/on 

the mass, J is the inertia matrix which is given by 
⎡ ⎤ 

Ix 0 0 

J = ⎣ 0 Iy 0 ⎦ 

0 0 Iz 

Due to the symmetry of the geometric form of the quadrotor 

the coupling inertia is assumed to be zero. The notations     
F , T stand for the vector of external s and 

landing. Yaw angle ψ is obtained by speeding up\slowing 
ext ext 

that of external torques, respectively. They contain the heli- 
down the diagonal motors depending on desired direction. Roll 

angle φ axe allows the quadrotor to move toward y direction. 

Pitch angle θ axe allows the quadrotor to move toward x 

direction. The rotor is the primary source of control and 

propulsion for the UAV. The Euler angle orientation to the 

flow provides the s and moments to control the altitude 

and position of the system. The absolute position is described 

by three coordinates (x0, y0, z0), and its attitude by 

copter’s weight, the aerodynamic s vector, the thrust and 

the torque developed by the four rotors. It is straightforward to 

compute that 
⎡ ⎤ 

Ax − (CφCψSθ + SφSψ)u1   

  

Fext = ⎣ Ay − (CφSθSψ − CψSφ)u1 ⎦ (6) 

Az + mg − (CθCφ)u1 
⎡ ⎤ 

Ap + u2d 

Aq + u3d Euler angles (ψ, θ, φ), under the conditions (−π ≤ ψ < π) Text = ⎣ ⎦ 
for yaw, (− <  θ < for pitch and (− <  φ  <  

π ) π ) π π 
A + u 2 2 2 2 r 4 

for roll. The derivatives with respect to time of the angles 

(ψ,θ,φ) can be expressed in the form: where 

(Ax, Ay, Az)T and col(Ap, Aq, Ar)T are the resulting 

aerodynamic s and moments acting on the UAV 

and are computed from the aerodynamic coefficients Ci 

• 
˙ ˙  ̇col(ψ, θ, φ) = M (ψ, θ, φ)ω (1) 

where ω = col(p, q, r) is the angular velocity expressed with 

respect to a body reference frame and M (ψ, θ, φ) is the 3x3 

matrix given by: 

as Ai = 1 ρair CiW 2 [11],[12] (ρair is the air density, 2 

W is the velocity of the UAV with respect to the air) [15]. 

(Ci depend on several parameters like the angl ween 

airspeed and the body fixed reference system, the 

aerodynamic and geometric form of the wing); 

g is the gravity constant (g = 9.81ms−2); 

⎡ ⎤ 
0 SφSeθ 

Cφ 

SφTθ  

CφSeθ 

M (ψ, θ, φ) = ⎣ 0 ⎦ (2) −Sφ 
1 CφTθ  • 
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Ma ontribution. In the paper the model of UAV Quadro-
tor and feedback linearization-based controller is suggested.
To realize this with a high order sliding mode observer
running parallel is applied to a quadrotor unmanned aerial
vehicle. The high order sliding mode observer works as
an observer and estimator of the effect of the external
disturbances such as wind and noise. The whole observer-
estimator-control law constitutes an original approach to
the vehicle regulation with minimal number of sensors.
Performance issues of the controller-observer are illustrated
in a simulation study that takes into account parameter
uncertainties and external disturbances UAV Quadrotor is
suggested. To realize the control algorithm and identify the
uncertainties a order sliding mode observer based on

order differentiator [21] is suggested This observer
converge in finite time ensuring the identification of the effect
of the external disturbances such as wind and noise. The
whole observer-estimator-control law constitutes an original
approach to the vehicle regulation with minimal number
of sensors. Performance issues of the controller-observer
are illustrated in a simulation study that takes into account
parameter uncertainties and external disturbances.

Paper structure.The rest of the paper is outlined as follows.
UAV dynamics is deduced in section 2. The inner outer
controller is developed in section 3. The observer design is
presented in section 4. Simulation results are given in section
5. Section 6 yields some conclusions.

II. QUADROTOR DYNAMICS

The quadrotor is composed of 4 rotors. Two diagonal
motors (1 and 3) are running in the same direction whereas
the others (2 and 4) in the other direction to eliminate the
anti-torque. On varying the rotor speeds altogether with the
same ty the lift s will change affecting in this case
the altitude z of the system and enabling vertical take-off/on
landing. Yaw angle ψ is obtained by speeding up\slowing
down the diagonal motors depending on desired direction.
Roll angle φ axe allows the quadrotor to move toward y
direction. Pitch angle θ axe allows the quadrotor to move
toward x direction. The rotor is the primary source of control
and propulsion for the UAV. The Euler angle orientation to
the flow provides the s and moments to control the
altitude and position of the system. The absolute position is
described by three coordinates (x0, y0, z0), and its attitude by
Euler angles (ψ, θ, φ), under the conditions (−π ≤ ψ < π)
for yaw, (−π

2 < θ < π
2 ) for pitch and (−π

2 < φ < π
2 )

for roll. The derivatives with respect to time of the angles
(ψ,θ,φ) can be expressed in the form:

col(ψ̇, θ̇, φ̇) = M(ψ, θ, φ)ω (1)

where ω = col(p, q, r) is the angular velocity expressed with
respect to a body reference frame and M(ψ, θ, φ) is the 3x3
matrix given by:

M(ψ, θ, φ) =

⎡
⎣ 0 SφSeθ CφSeθ

0 Cφ −Sφ
1 SφTθ CφTθ

⎤
⎦ (2)

with S. = sin(.), C. = cos(.), T. = tan(.), Se. = sec(.)
This matrix, as shown, depends only on (ψ, θ, φ) and it is

invertible if the above conditions on (ψ, θ, φ) hold.
Similarly, the time derivative of the position (x0, y0, z0)

is given by:
col(ẋ0, ẏ0, ż0) = V0 (3)

where V0 = col(u0, v0, w0) is the absolute velocity of
the UAV expressed with respect to an earth fixed inertial
reference frame. Let V = col(u, v, w) be the absolute
velocity of the UAV expressed in a body fixed reference
frame. Then V and V0 relate according to

V0 = R(ψ, θ, φ)V

where R(ψ, θ, φ) is the rotation matrix given by

R =

⎡
⎣ CθCψ CψSθSφ − CφSψ CφCψSθ + SφSψ

CθSψ SθSφSψ + CφCψ CφSθSψ − CψSφ
−Sθ CθSφ CθCφ

⎤
⎦

Equations (1) and (3) are the kinematic equations. The
dynamic equations are now expressed. Using the Newton’s
laws about the center of mass one obtains the dynamic
equations for the miniature four rotors helicopter

mV̇0 =
�

Fext (4)

Jω̇ = −ω × Jω +
�

Text (5)

where the symbol × denotes the usual vector product, m is
the mass, J is the inertia matrix which is given by

J =

⎡
⎣ Ix 0 0

0 Iy 0
0 0 Iz

⎤
⎦

Due to the symmetry of the geometric form of the quadrotor
the coupling inertia is assumed to be zero. The notations�

Fext,
�

Text stand for the vector of external s and
that of external torques, respectively. They contain the heli-
copter’s weight, the aerodynamic s vector, the thrust and
the torque developed by the four rotors. It is straightforward
to compute that

�
Fext =

⎡
⎣ Ax − (CφCψSθ + SφSψ)u1

Ay − (CφSθSψ − CψSφ)u1

Az + mg − (CθCφ)u1

⎤
⎦ (6)

�
Text =

⎡
⎣ Ap + u2d

Aq + u3d
Ar + u4

⎤
⎦

where
• (Ax, Ay, Az)T and col(Ap, Aq, Ar)T are the resulting

aerodynamic s and moments acting on the UAV
and are computed from the aerodynamic coefficients Ci

as Ai = 1
2ρairCiW

2 [11],[12] (ρair is the air density,
W is the velocity of the UAV with respect to the air)
[15]. (Ci depend on several parameters like the angle
between airspeed and the body fixed reference system,
the aerodynamic and geometric form of the wing);

• g is the gravity constant (g = 9.81ms−2);
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d is the distance from the center of mass to the rotors; 

u1 is the resulting thrust of the four rotors defined as u1 

= (F1 + F2 + F3 + F4) 

u2 is the difference of thrust between the left rotor and 

The purpose of the next section is to design a feedback 

controller for the four rotor miniature helicopter which exhibits 

robustness properties  neglected effects and parametric 

uncertainties. 

III.  FEEDBACK LINEARIZATION CONTROLLER 

The feedback linearization technique is based on inner and 

outer loops of the controller. The Input-Output linearization- 

based inner loop uses the full state feedback to globally 

linearize the nonlinear dynamics of selected controlled out- 

puts. Each of the output channels is differentiated sufficiently 

many times until a control input component appears in the 

resulting equation. Using the Lie derivative, Input-Output 

linearization will transform the nonlinear system into a linear 

and non-in cting system in the Brunovsky form. The outer 

controller adopts a classical polynomial control law for the new 

input variable of the resulting linear system. 

A. Structure of the inner controller 

The input-output decoupling problem is solvable for the 

nonlinear system (8) by means of static feedback. The vector 

relative degree {r1, r2, r3, r4} is given by 

• 

• 

• 

the right rotor defined as u2 = d (F4 − F2) 

u3 is the difference of thrust between the front rotor 

and the back rotor defined as u3 = d(F3 − F1) 

• 

u4 is the difference of torqu ween the two clockwise 

turning rotors and the two counter-clockwise turning 

• 

rotors defined as u4 = C(F1 − F2 + F3 − F4) 

C is the  to moment scaling factor • 

Assuming that the electric motors are velocity controlled, 

then (u1, u2, u3, u4) may be viewed as control inputs. The 

dynamic model of the quadrotor has been developed in 

many experimental works but in different manner, like S. 

Bouabdallah ([16]). Referring to [17], the real control signals 

(u1, u2, u3, u4) have been re ced by ( ū 1 ,  ū 2 ,  ū 3 ,  ū 4 )  to 

avoid singularity in Lie transformation matrices when using 

exact linearization. In that case u1 has been delayed by dou- ble 

integrator. The other control signals will keep unchanged 

u1 = ζ; ζ  ̇= ξ; 

u2 = ū 2  

u3 = ū 3  

u4 = ū 4  

ξ̇  = ū1 

(7) r = r = r = 4; r = 2  1 2 3 4 

and we have 

The obtained extended system is described by state space 

equations of the form: col(y(r1 ), y(r2 ), y(r3 ), y(r4 )) = b(x)+ Δ(x)u  ̄ (9) 1 2 3 4 

where Δ(x) and b(x) are computed as follows:   4 

 ̄x
· 
= f (x )+ g ̄  (x ) ̄  (8) u ⎡ ⎤ i i 

Lg
1 
L 1 h1(x) r −1 Lg

4 
L 1 h1(x) r −1 ... 

. . .
 

···  

i=1 f f 

Δ(x) = 
⎢
⎣ ⎥

⎦
 

 
(10) 

y = h(x) ···  ···  
r −1 r −1 Lg L h (x ) Lg L h (x ) 4 4 

where 4 4 1  f 4  f 

⎡ ⎤ 
x = [x0, y0, z0, ψ, θ, φ, u0, v0, w0,ζ, ξ, p, q, r]T Lr1 h (x) 1 

. 
f 

y = [  ]
T 

b(x) = 
⎢
⎣ ⎥

⎦
 x0, y0, z0,ψ  

. ⎡ ⎤ 
u0 

v0 

w0 

L h (x r ) 4 

4 f 

⎢ ⎥ 
where 

⎢ ⎥ 
qSφSeθ + rCφS θ ⎢ ⎥ n   e ∂h 

∂x 
Lf h(x) =  fi(x); Lkh(x) = Lf (Lk−1h(x)) ⎢ qCφ − rSφ ⎥ f f 

i 
  p + qSφTθ + rCφTθ ⎢ ⎥ i=1 

Ax  1 
—  (CφCψSθ + SφSψ )ζ The matrix Δ(x) is non singular everywhere in the region ⎢ ⎥ 

m m 
f = Ay 1 ζ =⊂ 0, − < π π π π ⎢ (CφSθSψ − CψSφ) ζ ⎥ φ < , — < θ < . Therefore, the 

m 
− 

m ⎢ ⎥ 2 2 2 2 

input-output decoupling problem is solvable for system (8) 

by means of a control law of the form: 

A + g−  (CθCφ 1 )ζ z 

⎢ ⎥ m m 

ξ 

0 
Iy −Iz qr + 

Ap 

⎢ ⎥ 
 ̄= α(x)+ β(x)v (11) u 

⎢ ⎥ Ix Ix ⎢
⎣

 ⎥
⎦

 where α(x) and β(x) are given by Iz −Ix pr + 
Aq 

Iy Iy 
Ix −Iy pq + Ar α(x) = −Δ−1(x)b(x) (12) Iz Iz 

β(x) = Δ−1(x) 

Taking into account relation (7), we derive the 

g  ̄ (x) = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]T 1 
    T 

 ̄(x ) =  0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0  d , 0 structure g 2 Ix 
    (Figure 1) of the control law of system (8). Moreover, s e 

system (8) has dimension n = 14, the condition 

T 
 d  ̄(x ) =  0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , , 0 g 3 Iy 

    T 
 1 
Iz 

 ̄(x ) =  0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 g 4 
r1 + r2 + r3 + r4 = n 
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• d is the distance from the center of mass to the rotors;
• u1 is the resulting thrust of the four rotors defined as

u1 = (F1 + F2 + F3 + F4)
• u2 is the difference of thrust between the left rotor and

the right rotor defined as u2 = d (F4 − F2)
• u3 is the difference of thrust between the front rotor

and the back rotor defined as u3 = d(F3 − F1)
• u4 is the difference of torqu ween the two clockwise

turning rotors and the two counter-clockwise turning
rotors defined as u4 = C(F1 − F2 + F3 − F4)

• C is the to moment scaling factor
Assuming that the electric motors are velocity controlled,

then (u1, u2, u3, u4) may be viewed as control inputs. The
dynamic model of the quadrotor has been developed in
many experimental works but in different manner, like S.
Bouabdallah ([16]). Referring to [17], the real control signals
(u1, u2, u3, u4) have been re ced by (ū1, ū2, ū3, ū4) to
avoid singularity in Lie transformation matrices when using
exact linearization. In that case u1 has been delayed by dou-
ble integrator. The other control signals will keep unchanged

u1 = ζ; ζ̇ = ξ; ξ̇ = ū1

u2 = ū2

u3 = ū3

u4 = ū4

(7)

The obtained extended system is described by state space
equations of the form:

·
x = f̄(x) +

4�
i=1

ḡi(x)ūi (8)

y = h(x)

where

x = [x0, y0, z0, ψ, θ, φ, u0, v0, w0, ζ, ξ, p, q, r]T

y = [x0, y0, z0, ψ]T

f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u0

v0

w0

qSφSeθ + rCφSeθ
qCφ − rSφ

p + qSφTθ + rCφTθ
Ax
m − 1

m (CφCψSθ + SφSψ)ζ
Ay

m − 1
m (CφSθSψ − CψSφ) ζ
Az

m + g− 1
m (CθCφ)ζ
ξ
0

Iy−Iz

Ix
qr + Ap

Ix
Iz−Ix

Iy
pr + Aq

Iy
Ix−Iy

Iz
pq + Ar

Iz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ḡ1(x) = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]T

ḡ2(x) =


0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, d

Ix
0, 0

�T

ḡ3(x) =


0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, d

Iy
, 0

�T

ḡ4(x) =


0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 1

Iz

�T

The purpose of the next section is to design a feedback
controller for the four rotor miniature helicopter which
exhibits robustness properties neglected effects and
parametric uncertainties.

III. FEEDBACK LINEARIZATION CONTROLLER

The feedback linearization technique is based on inner and
outer loops of the controller. The Input-Output linearization-
based inner loop uses the full state feedback to globally
linearize the nonlinear dynamics of selected controlled out-
puts. Each of the output channels is differentiated sufficiently
many times until a control input component appears in the
resulting equation. Using the Lie derivative, Input-Output
linearization will transform the nonlinear system into a linear
and non-in cting system in the Brunovsky form. The outer
controller adopts a classical polynomial control law for the
new input variable of the resulting linear system.

A. Structure of the inner controller

The input-output decoupling problem is solvable for the
nonlinear system (8) by means of static feedback. The vector
relative degree {r1, r2, r3, r4} is given by

r1 = r2 = r3 = 4; r4 = 2

and we have

col(y(r1)
1 , y

(r2)
2 , y

(r3)
3 , y

(r4)
4 ) = b(x) + Δ(x)ū (9)

where Δ(x) and b(x) are computed as follows:

Δ(x) =

⎡
⎢⎣

Lg1L
r1−1
f h1(x) ... Lg4L

r1−1
f h1(x)

· · · . . . · · ·
Lg1L

r4−1
f h4(x) · · · Lg4L

r4−1
f h4(x)

⎤
⎥⎦

b(x) =

⎡
⎢⎣

Lr1
f h1(x)

...
Lr4

f h4(x)

⎤
⎥⎦ (10)

where

Lfh(x) =
n�

i=1

∂h

∂xi
fi(x); Lk

fh(x) = Lf (Lk−1
f h(x))

The matrix Δ(x) is non singular everywhere in the region
ζ �= 0, −π

2 < φ < π
2 , −π

2 < θ < π
2 . Therefore, the

input-output decoupling problem is solvable for system (8)
by means of a control law of the form:

ū = α(x) + β(x)v (11)

where α(x) and β(x) are given by

α(x) = −Δ−1(x)b(x) (12)

β(x) = Δ−1(x)

Taking into account relation (7), we derive the structure
(Figure 1) of the control law of system (8). Moreover, s e
system (8) has dimension n = 14, the condition

r1 + r2 + r3 + r4 = n
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dynamics 

are the filtered signals of z41, z42, z43 and z6 given in the 

observer section. The closed-loop system (13), (14) can be 

rewritten in the form 

u = α(x) + β(x)v u u 

u 

u 

u 

u 

x 

e  ̇= Ae + ξ˜(x, t) 

ξ = [ξ1, ξ2, ξ3, ξ4]T 

(15) 

(16) 

(17) 
    T 

Fig. 1.  Block diagram of the inner loop. f f f f 
6 z = z , f z , z , z 41 42 43 

where e represents the tracking error between the desired 

value and the actual one, i.e., is fulfilled and therefore, the system can be transformed via 

static feedback into a system which, in suitable coordinates, is 

fully linear and controllable. However, due to the presence of 

external disturbances the Input-Output linearization is not 

exact and the inner closed loop system in that case is composed 

into a linear part and a nonlinear disturbance part: 

e = [e1, e2, e3, e4,e5, e6]T 

and 

⎛ ⎞ ⎛ ⎞ ⎛ e1 = [e11, e12, e13]T ⎞ ⎛ ⎞ d4x (4) 
0 y ξ1(x, t) 

= 
... v1 dt4 1 

e2 =  ̇   e1; e = e  ̈; e e 1 (18) d4 y0 y
(4) 

⎟ ⎜ ⎟ ⎜ ξ (x, t) ⎟ 3 1 4 v 

v 
⎜ ⎟ ⎜ = 

⎟ ⎜ d
4

t4 
= 

⎟ ⎜ 2 

3 

⎟ ⎜ + 2 ⎟
⎠

 2 
(4) ⎜ e = e˙  ⎝ ⎠ ⎝ ξ (x, t) d z0 ⎝ 

with 

⎠ ⎝ ⎠ y3 
6 5 3 

dt4 

ξ4(x, t) d2ψ 

dt2 

v4 y
(2) 

ξ˜(x, t) is the wind parameter errors of the disturbances The 

matrix A is then given by 

4 
(13) 

⎞ ⎛ ⎞ ⎡ ⎤ ⎛ A ẍ + a A + a A ξ (x, t) 0 

0 

0 

0 

I 

0 

0 

0 

I 

0 

0 

0 

0 
0 

−λ4 

0 

0 

0 

0 
1 

−λ5 

I 

0 

0 

14  p 15  q 1 m A ÿ + a A + a A 
24  p 25  q 

ξ2(x, t) 

ξ3(x, t) 

ξ4(x, t) 

⎟ ⎜ ⎟ ⎜ ⎢ ⎥ = ⎠ ⎜
⎝

 ⎟
⎠

 m 
⎝ A z̈ + a A + a A ⎢ ⎥ A = 34  p 35  q m 

−λ I −λ1I −λ2I −λ3I a45Aq + a46Ar ⎢ 0 ⎥
⎦

 
⎣ 0 

0 

0 

0 

0 

0 

0 

0 where 

a14 = (ζSφCψSθ − ζCφSψ)/(mIx); 
where I is an identity matrix of dimension 3 × 3 and the the 

a15 = −(ζCψCθ)/(mIy) control gains λi, i = 0 , . . . ,  5 are such that the eigenvalues 

of the matrix A have desired locations. 

It is very important to know the  of attraction of an 

equilibrium point that is the set of initial states from which the 

system converges to the equilibrium point itself [24],[25]. 

Actually, such problem arises in both system ysis and 

synthesis, in order to guarantee a stable behavior in a certain 

region of the state space. 

a24 = (ζSφSψSθ + ζCφCψ)/(mIx); 

a25 = −(ζSψCθ)/(mIy) 

a34 = (ζSφCθ)/(mIx); a35 = (ζSθ)(mIy) 

a45 = Sφ/(IyCθ); a46 = Cφ/(IzCθ) 

v1, v2, v3, v4, represent the new input control signals. The 

controller compares the primary state (x0, y0, z0, ψ) and their 

successive derivatives to the desired state trajectory. 

B. Structure of the outer controller 

While adapting a classical polynomial control law for the 

new input variable v with disturbance compensation, one 

obtains the following equations: 

IV.  HIGH ORDER SLIDING MODE OBSERVER 

Motivated by practice, the measured UAV variables are the 

absolute position x0, y0, z0 and the orientation ψ which 

represent the translational motion and rotation around z axis, 

respectively. Although non measurable signals can be 

obtained by successive differentiation, however, they are 

contaminated by the measurement noise to such a degree 

that the differentiation can no longer be used. To avoid 

differentiation let us construct an observer based on arbitrary 

order high order sliding mode differentiator [21].. 

... (4) f 
v e − z  11 41 

... (4) 
v = y − λ  ̈  − λ e  ̇ − λ e − z 

f e — λ e 2 3  12 2 12 1 12 0 12 d 42 
f ... (4) 

v = z − λ − z 3 e  3 d 43 
 ̈ f 

6 v = ψ − λ e˙ − λ e − z 4 d 5 5 4 5 

(14) 

where xd, yd, zd, ψd represent the desired output signals, 

corresponding to x0, y0, z0, ψ, respectively, the errors sig- 
A. Observer model 

The linearized dynamic model of the quadrotor with the 
nals e11 = [x0 − x0d] e12 = [y0 − y0d] e13 = [z0 − z0d] and 

e5 = [ψ − ψd] and the coefficients λi, i = 0, · · ·  , 5 are to be 
[x0, y0, z0]T , and x5 = ψ can be specified in the sequel. The variables zf , zf , and zf zf 

measured signals x1 =  41 42 43 6 
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y
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ψ
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u

u

Fig. 1. Block diagram of the inner loop.

is fulfilled and therefore, the system can be transformed via
static feedback into a system which, in suitable coordinates,
is fully linear and controllable. However, due to the presence
of external disturbances the Input-Output linearization is
not exact and the inner closed loop system in that case is
composed into a linear part and a nonlinear disturbance part:⎛

⎜⎜⎜⎝
y
(4)
1

y
(4)
2

y
(4)
3

y
(2)
4

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

d4x0
dt4

d4y0
dt4

d4z0
dt4
d2ψ
dt2

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

v1

v2

v3

v4

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

ξ1(x, t)
ξ2(x, t)
ξ3(x, t)
ξ4(x, t)

⎞
⎟⎟⎠
(13)

with ⎛
⎜⎜⎝

ξ1(x, t)
ξ2(x, t)
ξ3(x, t)
ξ4(x, t)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

Äx

m + a14Ap + a15Aq
Äy

m + a24Ap + a25Aq
Äz

m + a34Ap + a35Aq

a45Aq + a46Ar

⎞
⎟⎟⎟⎠

where

a14 = (ζSφCψSθ − ζCφSψ)/(mIx);
a15 = −(ζCψCθ)/(mIy)
a24 = (ζSφSψSθ + ζCφCψ)/(mIx);
a25 = −(ζSψCθ)/(mIy)
a34 = (ζSφCθ)/(mIx); a35 = (ζSθ)(mIy)
a45 = Sφ/(IyCθ); a46 = Cφ/(IzCθ)

v1, v2, v3, v4, represent the new input control signals. The
controller compares the primary state (x0, y0, z0, ψ) and their
successive derivatives to the desired state trajectory.

B. Structure of the outer controller

While adapting a classical polynomial control law for the
new input variable v with disturbance compensation, one
obtains the following equations:

v1 = x
(4)
d − λ3

...
e 11 − λ2ë11 − λ1ė11 − λ0e11 − zf

41

v2 = y
(4)
d − λ3

...
e 12 − λ2ë12 − λ1ė12 − λ0e12 − zf

42

v3 = z
(4)
d − λ3

...
e 13 − λ2ë13 − λ1ė13 − λ0e13 − zf

43

v4 = ψ̈d − λ5ė5 − λ4e5 − zf
6

(14)
where xd, yd, zd, ψd represent the desired output signals,
corresponding to x0, y0, z0, ψ, respectively, the errors sig-
nals e11 = [x0 − x0d] e12 = [y0 − y0d] e13 = [z0 − z0d] and
e5 = [ψ−ψd] and the coefficients λi, i = 0, · · · , 5 are to be
specified in the sequel. The variables zf

41, zf
42, zf

43 and zf
6

are the filtered signals of z41, z42, z43 and z6 given in the
observer section. The closed-loop system (13), (14) can be
rewritten in the form

ė = Ae + ξ̃(x, t) (15)

ξ = [ξ1, ξ2, ξ3, ξ4]
T (16)

zf =


zf
41, zf

42, zf
43, zf

6

�T

(17)

where e represents the tracking error between the desired
value and the actual one, i.e.,

e = [e1, e2, e3, e4,e5, e6]
T

and

e1 = [e11, e12, e13]
T

e2 = ė1; e3 = ë1; e4 =
...
e 1 (18)

e6 = ė5

ξ̃(x, t) is the wind parameter errors of the disturbances The
matrix A is then given by

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 I 0 0 0 0
0 0 I 0 0 0
0 0 0 I 0 0

−λ0I −λ1I −λ2I −λ3I 0 0
0 0 0 0 0 1
0 0 0 0 −λ4 −λ5

⎤
⎥⎥⎥⎥⎥⎥⎦

where I is an identity matrix of dimension 3×3 and the the
control gains λi, i = 0, . . . , 5 are such that the eigenvalues
of the matrix A have desired locations.

It is very important to know the of attraction of an
equilibrium point that is the set of initial states from which
the system converges to the equilibrium point itself [24],[25].
Actually, such problem arises in both system ysis and
synthesis, in order to guarantee a stable behavior in a certain
region of the state space.

IV. HIGH ORDER SLIDING MODE OBSERVER

Motivated by practice, the measured UAV variables are
the absolute position x0, y0, z0 and the orientation ψ
which represent the translational motion and rotation around
z axis, respectively. Although non measurable signals can
be obtained by successive differentiation, however, they are
contaminated by the measurement noise to such a degree
that the differentiation can no longer be used. To avoid
differentiation let us construct an observer based on arbitrary
order high order sliding mode differentiator [21]..

A. Observer model

The linearized dynamic model of the quadrotor with the
measured signals x1 = [x0, y0, z0]

T
, and x5 = ψ can be
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represented in the following state space form equations of (22) in the form of differential lusion 

x̃
·  

= x˜ − γ |x̃1 | sign 
3/ 4 

x˙ = x ( ̃  ) x 1 2 1 2 1 1 

ẋ2 = x3 

ẋ3 = x4 
x̃
· 

= x˜ − γ |μ − xˆ |
2/3 

sign(μ − xˆ ) 2 3 2 2 2 2 2 

· 1/2 

x̃ 3  = x̃ 4  − γ3 |μ3 − x̂3 | sign(μ3 − x̂3 )  
x˙ = [v ,v ,v ]T + [ξ ,ξ ,ξ ]T (19) 4 1  2  3 

ẋ5 = x6 

ẋ 6 = v4 + ξ4 

1  2  3 · 

˜ ∈ [ −f , f ] − α 
+ + ( ˆ ) (23) x sign μ − x 4 4 4 4 4 4 

This lusion is understood in Filippov sense [23]. The proof 

finite time convergence now is follows from Lemma 8 in [21]. 

B. Output states reconstruction 

The sliding observer presented above is in fa tate 

estimator with partial state feedback (x0, y0, z0, ψ) taken as 

measured variables. The observer estimates the state needed by 

the control law to calculate the tracking error between the 

desired trajectories (x1d, x2d, x3d, x4d, x5d, x6d) and the 

estimated ones ( x̂1 ,  x̂ 2 ,  x̂ 3 ,  x̂ 4 ,  x̂ 5 ,  x̂ 6 ) .  Unfortuna y, the 

estimated state does not involve all the output states. In that 

case, to complete the full state output, the missed variables (θ, 

φ, p, q, r) of the state vector x (8) have been calculated through 

the estimated values and from the nonlinear system of 

equation (8), without taking the perturbation into account. So, 

from (8) θ and φ are deduced as follows: 

Let us propose the observer based on high order differ- 

entiation for the state variables x1, x2, x3, x4, x5, x6 of the 

form: 

· 

x̂1 = x̂2 + z1 

x̂
·  

= xˆ + z 2 3 2 

x̂
· 

3 = x̂ 4  + z3 
· 

T 
x̂ 4  = [v1, v2, v3] + z4 (20) 

x̂
·  

= xˆ + z 5 6 5 

x̂
· 

6 = v4 + z6 

where 
⎛ ⎞ 

3/4 

sign(x 
ˆ ˆ 

z = γ |x − x̂1 | — x̂ ) ( ̈  Sψ − y  ̈Cψ ) −m x 1 1 1 1 1 ˆ 0 
φ = arcsin ⎝ 0 ⎠ (24) 2/3 

z2 = γ2 |μ2 − x̂ 2 |  sign(μ2 − x̂ 2 )  ζ 

⎛ ⎞ 1/2 

z3 = γ3 |μ3 − x̂ 3 |  sign(μ3 − x̂3 )  (21) ˆ ˆ 

1 ( ̈  Cψ + y ̈ Sψ ) −m x 
θ̂ = arcsin 

0 ⎝ 0 ⎠ 
z = α sign(μ − xˆ ) 

Cφ̂ 
4 4 4 4 

ζ 1/2 

z5 = γ4 |x5 − x̂ 5 |  sign(x5 − x̂5 )  
The variables (pˆ, qˆ, rˆ) can be found from the transforma- 

z6 = α6sign(μ6 − x̂ 6 )  
tion matrix (2) which needs the variables ( ̂

˙
 ˆ̇ ˆ˙). The latter ψ, θ, φ 

.̂ .. and .̂ .. 
can be evaluated from (24) and the third derivatives ( x0, y 0) 

i.e. : μ2 = x̂ 2  + z1; μ3 = x̂ 3  + z2; μ4 = x̂ 4  + z3; 

μ6 = x̂ 6  + z5 

Theorem 1: The observer (20),(21) for the system (19) 

ensures in finite time the convergence of the estimated states 

⎧
⎪

 ⎫
⎪

 
.̂ .. 

mx0(Sφ̂S θ̂Sψ + CψC φ̂)+ 
⎨⎪ ⎪⎬ 

1 ˆ̇ ...  ̂

θ = − m (C φ̂Sψ − S φ̂CψS θ̂) (25) y 0 ˆ 2  ̂CθC φζ ⎪ ⎪⎭ ˆ ⎩ 
+ψ̇ζC φ̂Sφ̂C2θ̂ − Sθˆζ 

to the real states, i.e (xˆ , xˆ , xˆ , xˆ , xˆ , xˆ ) −→ (x , x , 1 2 3 4 5 6 1 2 
  

x3, x4, x5, x6) and the convergence of the filtered = zf 
  1  

ζC(φ) 

.̂ .. ˆ̇ .̂ ..     4 ˆ  ̂ ˆ φ = −mx Sψ + ψζCφSθ + ζSφ + mCψ y T 
ˆ 0 0 

z , z , zf to ξ = [ξ ,ξ ,ξ ]T and the filtered zf to 
f f 

123 1  2  3 41 42  43 6 
(26) ξ4. Proof: The finite time convergence of observers for 

So from the following matrix equation, the estimation of 

the variables (pˆ, qˆ, rˆ) can be deduced: 
variables x̃ 5 ,  x̃ 6  is proved in [20].Taking x̃ i  = xi − x̂ i  the 
estimation error can be written as: 

⎤−1 
⎡ 

ˆ̇ 
⎤ 

⎡ ⎤ ⎡ 
Sφ̂S θ̂ Cφ̂S θ̂ 

˜
· 3/4 

0 p̂ 

q̂ 

r̂ 

ψ x1 = ̃   ˜ | sign x1 (˜ ) x − γ | x e e ⎢ ⎥ 2 1 1 
ˆ̇ ˆ 

ˆ 
⎦ ⎢

⎣
 ⎣ ⎦ = ⎣ ⎥

⎦
 0 (27) Cφ −Sφ θ · 2/3 

x̃ 2  = x̃ 3  − γ2 |μ2 − x̂2 | sign(μ2 − x̂ 2 )  1 Sφ̂T θ̂ Cφ̂T θ̂ ˆ̇ 
φ 

· 1/2 

x̃ 3  = x̃ 4  − γ3 |μ3 − x̂3 | sign(μ3 − x̂3 )  

x̃
· 

4 = ξ123 − α4sign(μ4 − x̂ 4 )  

The over-all controller-observer closed-loop system is pre- 

sented in figure 2. The stability proof for this over-all closed- 

loop system is similar to those of Theorem 1 and Theorem 

2 and it is therefore omitted. Instead, simulation evidences will 

be provided in the next section. 

(22) 

To proof of finite time convergence of the error of observer 

(20) for x̃ 1 ,  x̃ 2 ,  x̃ 3 ,  x̃ 4  we need just to rewrite first four 
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represented in the following state space form

ẋ1 = x2

ẋ2 = x3

ẋ3 = x4

ẋ4 = [v1, v2, v3]
T + [ξ1, ξ2, ξ3]

T (19)

ẋ5 = x6

ẋ6 = v4 + ξ4

Let us propose the observer based on high order differ-
entiation for the state variables x1, x2, x3, x4, x5, x6 of the
form:

·
x̂1 = x̂2 + z1

·
x̂2 = x̂3 + z2

·
x̂3 = x̂4 + z3

·
x̂4 = [v1, v2, v3]

T + z4 (20)
·
x̂5 = x̂6 + z5

·
x̂6 = v4 + z6

where

z1 = γ1 |x1 − x̂1|
3/4

sign(x1 − x̂1)

z2 = γ2 |μ2 − x̂2|2/3
sign(μ2 − x̂2)

z3 = γ3 |μ3 − x̂3|1/2
sign(μ3 − x̂3) (21)

z4 = α4sign(μ4 − x̂4)

z5 = γ4 |x5 − x̂5|1/2
sign(x5 − x̂5)

z6 = α6sign(μ6 − x̂6)

and

μ2 = x̂2 + z1; μ3 = x̂3 + z2; μ4 = x̂4 + z3;
μ6 = x̂6 + z5

Theorem 1: The observer (20),(21) for the system (19)
ensures in finite time the convergence of the estimated states
to the real states, i.e (x̂1, x̂2, x̂3, x̂4, x̂5, x̂6) −→ (x1, x2,
x3, x4, x5, x6) and the convergence of the filtered zf

4 =

zf
41, z

f
42, z

f
43

�T

to ξ123 = [ξ1, ξ2, ξ3]
T and the filtered zf

6 to
ξ4. Proof: The finite time convergence of observers for
variables x̃5, x̃6 is proved in [20].Taking x̃i = xi − x̂i the
estimation error can be written as:

·
x̃1 = x̃2 − γ1 |x̃1|

3/4

sign(x̃1)
·
x̃2 = x̃3 − γ2 |μ2 − x̂2|

2/3

sign(μ2 − x̂2)
·
x̃3 = x̃4 − γ3 |μ3 − x̂3|

1/2

sign(μ3 − x̂3)
·
x̃4 = ξ123 − α4sign(μ4 − x̂4) (22)

To proof of finite time convergence of the error of observer
(20) for x̃1, x̃2, x̃3, x̃4 we need just to rewrite first four

equations of (22) in the form of differential lusion
·
x̃1 = x̃2 − γ1 |x̃1|

3/4

sign(x̃1)
·
x̃2 = x̃3 − γ2 |μ2 − x̂2|

2/3

sign(μ2 − x̂2)
·
x̃3 = x̃4 − γ3 |μ3 − x̂3|

1/2

sign(μ3 − x̂3)
·
x̃4 ∈ [−f+

4 , f+
4 ] − α4sign(μ4 − x̂4) (23)

This lusion is understood in Filippov sense [23]. The
proof finite time convergence now is follows from Lemma 8
in [21].

B. Output states reconstruction

The sliding observer presented above is in fa tate
estimator with partial state feedback (x0, y0, z0, ψ) taken as
measured variables. The observer estimates the state needed
by the control law to calculate the tracking error between
the desired trajectories (x1d, x2d, x3d, x4d, x5d, x6d) and the
estimated ones (x̂1, x̂2, x̂3, x̂4, x̂5, x̂6). Unfortuna y, the
estimated state does not involve all the output states. In that
case, to complete the full state output, the missed variables
(θ, φ, p, q, r) of the state vector x (8) have been calculated
through the estimated values and from the nonlinear system
of equation (8), without taking the perturbation into account.
So, from (8) θ and φ are deduced as follows:

φ̂ = arcsin

⎛
⎝−m(

ˆ
ẍ0Sψ − ˆ

ÿ0Cψ)
ζ

⎞
⎠ (24)

θ̂ =
1

Cφ̂
arcsin

⎛
⎝−m(

ˆ
ẍ0Cψ +

ˆ
ÿ0Sψ)

ζ

⎞
⎠

The variables (p̂, q̂, r̂) can be found from the transforma-

tion matrix (2) which needs the variables ( ˙̂
ψ,

˙̂
θ,

˙̂
φ). The latter

can be evaluated from (24) and the third derivatives (
.̂..
x0,

.̂..
y 0)

i.e. :

˙̂
θ = − 1

Cθ̂C2φ̂ζ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m
.̂..
x0(Sφ̂Sθ̂Sψ + CψCφ̂)+

m
.̂..
y 0(Cφ̂Sψ − Sφ̂CψSθ̂)

+
ˆ

ψ̇ζCφ̂Sφ̂C2θ̂ − Sθ̂ζ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(25)

˙̂
φ =

1
ζC(φ̂)

{
−m

.̂..
x0Sψ + ψζCφ̂Sθ̂ + ζSφ̂ + mCψ

.̂..
y 0

}

(26)
So from the following matrix equation, the estimation of

the variables (p̂, q̂, r̂) can be deduced:

⎡
⎣ p̂

q̂
r̂

⎤
⎦ =

⎡
⎣ 0 Sφ̂Seθ̂ Cφ̂Seθ̂

0 Cφ̂ −Sφ̂

1 Sφ̂T θ̂ Cφ̂T θ̂

⎤
⎦
−1

⎡
⎢⎢⎣

˙̂
ψ
˙̂
θ
˙̂
φ

⎤
⎥⎥⎦ (27)

The over-all controller-observer closed-loop system is pre-
sented in figure 2. The stability proof for this over-all closed-
loop system is similar to those of Theorem 1 and Theorem
2 and it is therefore omitted. Instead, simulation evidences
will be provided in the next section.
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V. SIMULATION RESULTS

The constant quadrotor parameters, used in the simulation
run, are:

m = 2Kg; Ix = Iy = Iz = 1.2416N.m/rad/s2;

d = 0.1m; g = 9.81m/s2

The gain values of (λ0, λ1, λ2, λ3) and (λ4, λ5) represent
the coefficients of the polynomial (s + 5)4 and (s + 5)2

respectively. For a specific f+
i and αi, the values of γi are

chosen as γ1 = 3, γ2 = 2.5,γ3 = γ4 = 1.5 and α4 = α6 =
1.1. An application has been established without and with
disturbances and with uncertainties to see the performance
and robustness of the sliding mode observer.

a) Without disturbance: Taking for this case (Ax =
Ay = Az = 0); (Ap = Aq = Ar = 0); the following results
are obtained (figures-(3, 4).
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disturbances are introduced the results in figures (5 to 
[8] 8) reflect the robustness of the mixed observer-controller, 

also confirmed by the tracking error convergence (figure- 

9), without need of an external estimation procedure.. The 

estimation of  and moment disturbances are presented 

in figures (11, 13), it shows that the estimated disturbances 

follow exactly the computed ones . However It appears that 

the system dynamic behavior is more sensitive toward 

aerodynamic moment disturbances. This is also confirmed by 

variation of s F1, F2, F3 and F4 in figure (12) which exactly 

reflects the movement of the quadrotor in x, y, and z directions 

in the presence of disturbances. The convergence of the output 

state vector is obtained in spite of the non- robust exact 

linearization  uncertainties on system parameters. On 

the other side excessive chattering around desired trajectories 

is avoided by using high order sliding mode. 
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VI. CONCLUSION 

A feedback linearization controller using high order slid- ing 

mode observer has been applied to a quadrotor Un- manned 
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affected by aerodynamic s and moments, is non linear and 

high coupled, the feedback linearization coupled to HOSM 

observer and applied to the UAV, turns out to be a good starting 

point to avoid complex nonlinear control solu- tions and 

excessive chattering. However, in the presence of nonlinear 

disturbances the system after linearization remains nonlinear. 

The observer used here overcomes easily this non- linearities 

by an inner estimation of the external disturbances to impose 

desired stability and robustness properties on the global closed 

loop system. The unmeasured states and their derivatives have 

been successfully reconstructed through the sliding mode 

observer design. 

Theoretical results have been supported by numerical 

simulations that demonstrated efficiency of the proposed 

controller design. It is hoped that further investigation carries 

out robust controllers that would compensate noise effects 
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