云南省宣威市第九中学2024年高三第二学期期终教学监控数学试题.doc

云南省宣威市第九中学2024年高三第二学期期终教学监控数学试题.doc

此“教育”领域文档为创作者个人分享资料,不作为权威性指导和指引,仅供参考
  1. 1、本文档共19页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多

云南省宣威市第九中学2023年高三第二学期期终教学监控数学试题

考生请注意:

1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合,则()

A. B. C. D.

2.已知等差数列的前项和为,,,则()

A.25 B.32 C.35 D.40

3.已知函,,则的最小值为()

A. B.1 C.0 D.

4.函数()的图像可以是()

A. B.

C. D.

5.已知数列的首项,且,其中,,,下列叙述正确的是()

A.若是等差数列,则一定有 B.若是等比数列,则一定有

C.若不是等差数列,则一定有 D.若不是等比数列,则一定有

6.小张家订了一份报纸,送报人可能在早上之间把报送到小张家,小张离开家去工作的时间在早上之间.用表示事件:“小张在离开家前能得到报纸”,设送报人到达的时间为,小张离开家的时间为,看成平面中的点,则用几何概型的公式得到事件的概率等于()

A. B. C. D.

7.已知排球发球考试规则:每位考生最多可发球三次,若发球成功,则停止发球,否则一直发到次结束为止.某考生一次发球成功的概率为,发球次数为,若的数学期望,则的取值范围为()

A. B. C. D.

8.网格纸上小正方形边长为1单位长度,粗线画出的是某几何体的三视图,则此几何体的体积为()

A.1 B. C.3 D.4

9.已知是平面内互不相等的两个非零向量,且与的夹角为,则的取值范围是()

A. B. C. D.

10.已知实数满足,则的最小值为()

A. B. C. D.

11.将3个黑球3个白球和1个红球排成一排,各小球除了颜色以外其他属性均相同,则相同颜色的小球不相邻的排法共有()

A.14种 B.15种 C.16种 D.18种

12.设命题函数在上递增,命题在中,,下列为真命题的是()

A. B. C. D.

二、填空题:本题共4小题,每小题5分,共20分。

13.《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑中,平面,,且,过点分别作于点,于点,连接,则三棱锥的体积的最大值为__________.

14.设为锐角,若,则的值为____________.

15.命题“对任意,”的否定是.

16.“学习强国”学习平台是由中宣部主管,以深入学习宣传新时代中国特色社会主义思想为主要内容,立足全体党员、面向全社会的优质平台,现已日益成为老百姓了解国家动态,紧跟时代脉搏的热门app.该款软件主要设有“阅读文章”和“视听学习”两个学习板块和“每日答题”、“每周答题”、“专项答题”、“挑战答题”四个答题板块.某人在学习过程中,将六大板块依次各完成一次,则“阅读文章”与“视听学习”两大学习板块之间最多间隔一个答题板块的学习方法有________种.

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。

17.(12分)在平面直角坐标系中,直线的参数方程为(为参数,).在以坐标原点为极点、轴的非负半轴为极轴的极坐标系中,曲线的极坐标方程为.

(1)若点在直线上,求直线的极坐标方程;

(2)已知,若点在直线上,点在曲线上,且的最小值为,求的值.

18.(12分)已知函数.

(1)当时,求不等式的解集;

(2)若的解集包含,求的取值范围.

19.(12分)如图,湖中有一个半径为千米的圆形小岛,岸边点与小岛圆心相距千米,为方便游人到小岛观光,从点向小岛建三段栈道,,,湖面上的点在线段上,且,均与圆相切,切点分别为,,其中栈道,,和小岛在同一个平面上.沿圆的优弧(圆上实线部分)上再修建栈道.记为.

用表示栈道的总长度,并确定的取值范围;

求当为何值时,栈道总长度最短.

20.(12分)已知分别是内角的对边,满足

(1)求内角的大小

(2)已知,设点是外一点,且,求平面四边形面积的最大值.

21.(12分)在直角坐标系中,直线的参数方程为(为参数,).在以为极点,轴正半轴为极轴的极坐标中,曲线:.

(1)当时,求与的交点的极坐标;

(2)直线与曲线交于,两点,线段中点为,求的值.

22.(10分)已知函数.

(1)若对任意x0,f(x)0恒成立,求实数a的取值范围;

(2)若函数f(x)有两个不同的零点x1,x2(x1x2),证明:.

参考答案

一、选择题:本题共12小题,每小题5分,共60分。在每小

您可能关注的文档

文档评论(0)

151****2652 + 关注
实名认证
内容提供者

爱分享知识

1亿VIP精品文档

相关文档