Black-Scholes期权定价模型.pptx

Black-Scholes期权定价模型.pptx

此“经济”领域文档为创作者个人分享资料,不作为权威性指导和指引,仅供参考
  1. 1、本文档共19页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多

Black-Scholes期权定价模型

2024/11/162Black-Scholes期权定价模型

2024/11/163Black-Scholes期权定价模型的基本思路期权是标的资产的衍生工具,其价格波动的来源就是标的资产价格的变化,期权价格受到标的资产价格的影响。标的资产价格的变化过程是一个随机过程。因此,期权价格变化也是一个相应的随机过程。金融学家发现,股票价格的变化可以用Ito过程来描述。而数学家Ito发现的Ito引理可以从股票价格的Ito过程推导出衍生证券价格所遵循的随机过程。在股票价格遵循的随机过程和衍生证券价格遵循的随机过程中,Black-Scholes发现,由于它们都只受到同一种不确定性的影响,如果通过买入和卖空一定数量的衍生证券和标的证券,建立一定的组合,可以消除这个不确定性,从而使整个组合只获得无风险利率。从而得到一个重要的方程:Black-Scholes微分方程。求解这一方程,就得到了期权价格的解析解。

2024/11/164为什么要研究证券价格所遵循的随机过程?期权是衍生工具,使用的是相对定价法,即相对于证券价格的价格,因此要为期权定价首先必须研究证券价格。期权的价值正是来源于签订合约时,未来标的资产价格与合约执行价格之间的预期差异变化,在现实中,资产价格总是随机变化的。需要了解其所遵循的随机过程。研究变量运动的随机过程,可以帮助我们了解在特定时刻,变量取值的概率分布情况。

2024/11/165随机过程随机过程是指某变量的值以某种不确定的方式随时间变化的过程。随机过程的分类离散时间、离散变量离散时间、连续变量连续时间、离散变量连续时间、连续变量

2024/11/166几种随机过程标准布朗运动(维纳过程)起源于物理学中对完全浸没于液体或气体中,处于大量微小分子撞击下的的小粒子运动的描述。设Δt代表一个小的时间间隔长度,Δz代表变量z在Δt时间内的变化,遵循标准布朗运动的Δz具有两种特征:特征1:其中,ε代表从标准正态分布(即均值为0、标准差为1.0的正态分布)中取的一个随机值。特征2:对于任何两个不同时间间隔Δt,Δz的值相互独立。特征的理解特征1:;方差为特征2:马尔可夫过程:只有变量的当前值才与未来的预测有关,变量过去的历史和变量从过去到现在的演变方式与未来的预测无关。标准布朗运动符合马尔可夫过程,因此是马尔可夫过程的一种特殊形式。

2024/11/167标准布朗运动(续)考察变量z在一段较长时间T中的变化情形:z(T)-z(0)表示变量z在T中的变化量又可被看作是在N个长度为Δt的小时间间隔中z的变化总量,其中N=T/Δt。很显然,这是n个相互独立的正态分布的和:因此,z(T)-z(0)也具有正态分布特征,其均值为0,方差为NΔt=T,标准差为 。为何定义为:当我们需要考察任意时间长度间隔中的变量变化的情况时,独立的正态分布,期望值和方差具有可加性,而标准差不具有可加性。这样定义可以使方差与时间长度成比例,不受时间划分方法的影响。相应的一个结果就是:标准差的单位变为连续时间的标准布朗运动:当Δt?0时,我们就可以得到极限的标准布朗运动

2024/11/168普通布朗运动变量x遵循普通布朗运动:其中,a和b均为常数,z遵循标准布朗运动。这里的a为漂移率(DriftRate),是指单位时间内变量x均值的变化值。这里的b2为方差率(VarianceRate),是指单位时间的方差。这个过程指出变量x关于时间和dz的动态过程。其中第一项adt为确定项,它意味着x的期望漂移率是每单位时间为a。第二项bdz是随机项,它表明对x的动态过程添加的噪音。这种噪音是由维纳过程的b倍给出的。可以发现,任意时间长度后,x值的变化都具有正态分布特征,其均值为aT,标准差为,方差为b2T.

2024/11/169Ito过程和Ito引理伊藤过程(ItoProcess):普通布朗运动假定漂移率和方差率为常数,若把变量x的漂移率和方差率当作变量x和时间t的函数,我们就得到 其中,z遵循一个标准布朗运动,a、b是变量x和t的函数,变量x的漂移率为a,方差率为b2都随时间变化。这就是伊藤过程。Ito引理若变量x遵循伊藤过程,则变量x和t的函数G将遵循如下过程: 其中,z遵循一个标准布朗运动。由于a和b都是x和t的函数,因此函数G也遵循伊藤过程,它的漂移率为方差率为

2024/11/1610证券价格的变化过程目的:找到一个合适的随机过程表达式,来尽量准确地描述证券价格的变动过程,同时尽量实现数学处理上的简单性。基本假设:证券价格所遵循的随机过程:其中,S表示证券价格,μ表示证券在单位时间内以连续复利表示的期望

文档评论(0)

niujiaoba + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档