河南省安阳市林州一中2024年高考数学试题押题密卷(全国新课标Ⅰ卷).doc

河南省安阳市林州一中2024年高考数学试题押题密卷(全国新课标Ⅰ卷).doc

此“教育”领域文档为创作者个人分享资料,不作为权威性指导和指引,仅供参考
  1. 1、本文档共23页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多

河南省安阳市林州一中2024年高考数学试题押题密卷(全国新课标Ⅰ卷)

注意事项

1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.如图所示,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F且EF=,则下列结论中错误的是()

A.AC⊥BE B.EF平面ABCD

C.三棱锥A-BEF的体积为定值 D.异面直线AE,BF所成的角为定值

2.若的展开式中二项式系数和为256,则二项式展开式中有理项系数之和为()

A.85 B.84 C.57 D.56

3.已知函数.若存在实数,且,使得,则实数a的取值范围为()

A. B. C. D.

4.世纪产生了著名的“”猜想:任给一个正整数,如果是偶数,就将它减半;如果是奇数,则将它乘加,不断重复这样的运算,经过有限步后,一定可以得到.如图是验证“”猜想的一个程序框图,若输入正整数的值为,则输出的的值是()

A. B. C. D.

5.在精准扶贫工作中,有6名男干部、5名女干部,从中选出2名男干部、1名女干部组成一个扶贫小组分到某村工作,则不同的选法共有()

A.60种 B.70种 C.75种 D.150种

6.的展开式中的系数为()

A. B. C. D.

7.已知集合,则()

A. B.

C. D.

8.以,为直径的圆的方程是

A. B.

C. D.

9.已知实数满足约束条件,则的最小值为()

A.-5 B.2 C.7 D.11

10.曲线在点处的切线方程为()

A. B. C. D.

11.设为非零实数,且,则()

A. B. C. D.

12.已知函数.下列命题:①函数的图象关于原点对称;②函数是周期函数;③当时,函数取最大值;④函数的图象与函数的图象没有公共点,其中正确命题的序号是()

A.①④ B.②③ C.①③④ D.①②④

二、填空题:本题共4小题,每小题5分,共20分。

13.若函数(a>0且a≠1)在定义域[m,n]上的值域是[m2,n2](1<m<n),则a的取值范围是_______.

14.如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,则该几何体的体积为________.

15.已知下列命题:

①命题“?x0∈R,”的否定是“?x∈R,x2+1<3x”;

②已知p,q为两个命题,若“p∨q”为假命题,则“”为真命题;

③“a>2”是“a>5”的充分不必要条件;

④“若xy=0,则x=0且y=0”的逆否命题为真命题.

其中所有真命题的序号是________.

16.已知为等差数列,为其前n项和,若,,则_______.

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。

17.(12分)已知.

(Ⅰ)当时,解不等式;

(Ⅱ)若的最小值为1,求的最小值.

18.(12分)已知椭圆过点且椭圆的左、右焦点与短轴的端点构成的四边形的面积为.

(1)求椭圆C的标准方程:

(2)设A是椭圆的左顶点,过右焦点F的直线,与椭圆交于P,Q,直线AP,AQ与直线交于M,N,线段MN的中点为E.

①求证:;

②记,,的面积分别为、、,求证:为定值.

19.(12分)如图,在四棱柱中,平面,底面ABCD满足∥BC,且

(Ⅰ)求证:平面;

(Ⅱ)求直线与平面所成角的正弦值.

20.(12分)如图,已知,分别是正方形边,的中点,与交于点,,都垂直于平面,且,,是线段上一动点.

(1)当平面,求的值;

(2)当是中点时,求四面体的体积.

21.(12分)已知为坐标原点,点,,,动点满足,点为线段的中点,抛物线:上点的纵坐标为,.

(1)求动点的轨迹曲线的标准方程及抛物线的标准方程;

(2)若抛物线的准线上一点满足,试判断是否为定值,若是,求这个定值;若不是,请说明理由.

22.(10分)在极坐标系中,曲线的极坐标方程为

(1)求曲线与极轴所在直线围成图形的面积;

(2)设曲线与曲线交于,两点,求.

参考答案

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1、D

【解析】

A.通过线面的垂直关系可证真假;B.根据线面平行可证真假;C.根据三棱锥的体积计算的公式可证真假;D.根据列举特殊情况可证真假.

【详解】

A.因为,所以平面,

又因为平面,所以,故正确;

B.因为,所以,且平面,平面,

所以平面,故正确;

C.因为为定值,到

您可能关注的文档

文档评论(0)

je970105 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档