四川省广安市广安中学2023-2024学年高三下学期3月月考数学试题.doc

四川省广安市广安中学2023-2024学年高三下学期3月月考数学试题.doc

此“教育”领域文档为创作者个人分享资料,不作为权威性指导和指引,仅供参考
  1. 1、本文档共22页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多

四川省广安市广安中学2022-2023学年高三下学期3月月考数学试题

注意事项:

1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.函数的定义域为,集合,则()

A. B. C. D.

2.若关于的不等式有正整数解,则实数的最小值为()

A. B. C. D.

3.函数图像可能是()

A. B. C. D.

4.幻方最早起源于我国,由正整数1,2,3,……,这个数填入方格中,使得每行、每列、每条对角线上的数的和相等,这个正方形数阵就叫阶幻方.定义为阶幻方对角线上所有数的和,如,则()

A.55 B.500 C.505 D.5050

5.过双曲线的左焦点作直线交双曲线的两天渐近线于,两点,若为线段的中点,且(为坐标原点),则双曲线的离心率为()

A. B. C. D.

6.设P={y|y=-x2+1,x∈R},Q={y|y=2x,x∈R},则

A.PQ B.QP

C.Q D.Q

7.已知直线:与圆:交于,两点,与平行的直线与圆交于,两点,且与的面积相等,给出下列直线:①,②,③,④.其中满足条件的所有直线的编号有()

A.①② B.①④ C.②③ D.①②④

8.已知集合,,若A?B,则实数的取值范围是()

A. B. C. D.

9.双曲线的左右焦点为,一条渐近线方程为,过点且与垂直的直线分别交双曲线的左支及右支于,满足,则该双曲线的离心率为()

A. B.3 C. D.2

10.已知的面积是,,,则()

A.5 B.或1 C.5或1 D.

11.在中,,,,点,分别在线段,上,且,,则().

A. B. C.4 D.9

12.四人并排坐在连号的四个座位上,其中与不相邻的所有不同的坐法种数是()

A.12 B.16 C.20 D.8

二、填空题:本题共4小题,每小题5分,共20分。

13.的展开式中的系数为________________.

14.命题“对任意,”的否定是.

15.双曲线的左焦点为,点,点P为双曲线右支上的动点,且周长的最小值为8,则双曲线的实轴长为________,离心率为________.

16.设为正实数,若则的取值范围是__________.

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。

17.(12分)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,,为等边三角形,平面平面ABCD,M,N分别是线段PD和BC的中点.

(1)求直线CM与平面PAB所成角的正弦值;

(2)求二面角D-AP-B的余弦值;

(3)试判断直线MN与平面PAB的位置关系,并给出证明.

18.(12分)已知函数(),是的导数.

(1)当时,令,为的导数.证明:在区间存在唯一的极小值点;

(2)已知函数在上单调递减,求的取值范围.

19.(12分)如图,四棱锥中,四边形是矩形,,,为正三角形,且平面平面,、分别为、的中点.

(1)证明:平面;

(2)求几何体的体积.

20.(12分)已知圆上有一动点,点的坐标为,四边形为平行四边形,线段的垂直平分线交于点.

(Ⅰ)求点的轨迹的方程;

(Ⅱ)过点作直线与曲线交于两点,点的坐标为,直线与轴分别交于两点,求证:线段的中点为定点,并求出面积的最大值.

21.(12分)在平面直角坐标系xOy中,曲线的参数方程为(,为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线是圆心在极轴上,且经过极点的圆.已知曲线上的点M对应的参数,射线与曲线交于点.

(1)求曲线,的直角坐标方程;

(2)若点A,B为曲线上的两个点且,求的值.

22.(10分)如图,在四棱锥中,,,,底面为正方形,、分别为、的中点.

(1)求证:平面;

(2)求直线与平面所成角的正弦值.

参考答案

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.A

【解析】

根据函数定义域得集合,解对数不等式得到集合,然后直接利用交集运算求解.

【详解】

解:由函数得,解得,即;

又,解得,即,

则.

故选:A.

【点睛】

本题考查了交集及其运算,考查了函数定义域的求法,是基础题.

2.A

【解析】

根据题意可将转化

您可能关注的文档

文档评论(0)

初见 + 关注
实名认证
内容提供者

生活向阳,人生向暖,给生活加点糖

1亿VIP精品文档

相关文档