河南省安阳市林州一中火箭班2024年高三阶段性检测试题.doc

河南省安阳市林州一中火箭班2024年高三阶段性检测试题.doc

此“教育”领域文档为创作者个人分享资料,不作为权威性指导和指引,仅供参考
  1. 1、本文档共21页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多

河南省安阳市林州一中火箭班2024年高三阶段性检测试题

注意事项:

1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.以下四个命题:①两个随机变量的线性相关性越强,相关系数的绝对值越接近1;②在回归分析中,可用相关指数的值判断拟合效果,越小,模型的拟合效果越好;③若数据的方差为1,则的方差为4;④已知一组具有线性相关关系的数据,其线性回归方程,则“满足线性回归方程”是“,”的充要条件;其中真命题的个数为()

A.4 B.3 C.2 D.1

2.执行如下的程序框图,则输出的是()

A. B.

C. D.

3.函数的部分图象大致为()

A. B.

C. D.

4.已知的展开式中的常数项为8,则实数()

A.2 B.-2 C.-3 D.3

5.已知双曲线的左、右焦点分别为,,点P是C的右支上一点,连接与y轴交于点M,若(O为坐标原点),,则双曲线C的渐近线方程为()

A. B. C. D.

6.已知双曲线的右焦点为,若双曲线的一条渐近线的倾斜角为,且点到该渐近线的距离为,则双曲线的实轴的长为

A. B.

C. D.

7.已知双曲线满足以下条件:①双曲线E的右焦点与抛物线的焦点F重合;②双曲线E与过点的幂函数的图象交于点Q,且该幂函数在点Q处的切线过点F关于原点的对称点.则双曲线的离心率是()

A. B. C. D.

8.某几何体的三视图如图所示,则该几何体的最长棱的长为()

A. B. C. D.

9.已知数列是公比为的等比数列,且,,成等差数列,则公比的值为(???)

A. B. C.或 D.或

10.公比为2的等比数列中存在两项,,满足,则的最小值为()

A. B. C. D.

11.已知是虚数单位,若,,则实数()

A.或 B.-1或1 C.1 D.

12.已知△ABC中,.点P为BC边上的动点,则的最小值为()

A.2 B. C. D.

二、填空题:本题共4小题,每小题5分,共20分。

13.在平面五边形中,,,,且.将五边形沿对角线折起,使平面与平面所成的二面角为,则沿对角线折起后所得几何体的外接球的表面积是______.

14.设,则“”是“”的__________条件.

15.某公园划船收费标准如表:

某班16名同学一起去该公园划船,若每人划船的时间均为1小时,每只租船必须坐满,租船最低总费用为______元,租船的总费用共有_____种可能.

16.甲、乙两人下棋,两人下成和棋的概率是,乙获胜的概率是,则乙不输的概率是_____.

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。

17.(12分)已知.

(1)求不等式的解集;

(2)若存在,使得成立,求实数的取值范围

18.(12分)在平面直角坐标系xoy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系。已知曲线C的极坐标方程为,过点的直线l的参数方程为(为参数),直线l与曲线C交于M、N两点。

(1)写出直线l的普通方程和曲线C的直角坐标方程:

(2)若成等比数列,求a的值。

19.(12分)如图,设点为椭圆的右焦点,圆过且斜率为的直线交圆于两点,交椭圆于点两点,已知当时,

(1)求椭圆的方程.

(2)当时,求的面积.

20.(12分)已知函数.

(1)若,且,求证:;

(2)若时,恒有,求的最大值.

21.(12分)设抛物线过点.

(1)求抛物线C的方程;

(2)F是抛物线C的焦点,过焦点的直线与抛物线交于A,B两点,若,求的值.

22.(10分)联合国粮农组织对某地区最近10年的粮食需求量部分统计数据如下表:

年份

2010

2012

2014

2016

2018

需求量(万吨)

236

246

257

276

286

(1)由所给数据可知,年需求量与年份之间具有线性相关关系,我们以“年份—2014”为横坐标,“需求量”为纵坐标,请完成如下数据处理表格:

年份—2014

0

需求量—257

0

(2)根据回归直线方程分析,2020年联合国粮农组织计划向该地区投放粮食300万吨,问是否能够满足该地区的粮食需求?

参考公式:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为:,.

参考答案

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要

您可能关注的文档

文档评论(0)

je970105 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档