河北唐山市2024届高三下学期期中统考数学试题.doc

河北唐山市2024届高三下学期期中统考数学试题.doc

此“教育”领域文档为创作者个人分享资料,不作为权威性指导和指引,仅供参考
  1. 1、本文档共22页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多

河北唐山市2024届高三下学期期中统考数学试题

考生请注意:

1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.函数的图象大致为()

A. B.

C. D.

2.已知双曲线的一个焦点为,且与双曲线的渐近线相同,则双曲线的标准方程为()

A. B. C. D.

3.已知定义在上的偶函数,当时,,设,则()

A. B. C. D.

4.设集合,,则().

A. B.

C. D.

5.若复数满足(是虚数单位),则的虚部为()

A. B. C. D.

6.一个几何体的三视图如图所示,则该几何体的表面积为()

A. B.

C. D.

7.某三棱锥的三视图如图所示,网格纸上小正方形的边长为,则该三棱锥外接球的表面积为()

A. B. C. D.

8.已知复数z,则复数z的虚部为()

A. B. C.i D.i

9.过直线上一点作圆的两条切线,,,为切点,当直线,关于直线对称时,()

A. B. C. D.

10.已知的面积是,,,则()

A.5 B.或1 C.5或1 D.

11.定义,已知函数,,则函数的最小值为()

A. B. C. D.

12.记等差数列的公差为,前项和为.若,,则()

A. B. C. D.

二、填空题:本题共4小题,每小题5分,共20分。

13.实数,满足,如果目标函数的最小值为,则的最小值为_______.

14.已知椭圆的下顶点为,若直线与椭圆交于不同的两点、,则当_____时,外心的横坐标最大.

15.已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为______.

16.能说明“若对于任意的都成立,则在上是减函数”为假命题的一个函数是________.

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。

17.(12分)已知直线是曲线的切线.

(1)求函数的解析式,

(2)若,证明:对于任意,有且仅有一个零点.

18.(12分)如图,四棱锥中,底面是菱形,对角线交于点为棱的中点,.求证:

(1)平面;

(2)平面平面.

19.(12分)某芯片公司对今年新开发的一批5G手机芯片进行测评,该公司随机调查了100颗芯片,并将所得统计数据分为五个小组(所调查的芯片得分均在内),得到如图所示的频率分布直方图,其中.

(1)求这100颗芯片评测分数的平均数(同一组中的每个数据可用该组区间的中点值代替).

(2)芯片公司另选100颗芯片交付给某手机公司进行测试,该手机公司将每颗芯片分别装在3个工程手机中进行初测。若3个工程手机的评分都达到11万分,则认定该芯片合格;若3个工程手机中只要有2个评分没达到11万分,则认定该芯片不合格;若3个工程手机中仅1个评分没有达到11万分,则将该芯片再分别置于另外2个工程手机中进行二测,二测时,2个工程手机的评分都达到11万分,则认定该芯片合格;2个工程手机中只要有1个评分没达到11万分,手机公司将认定该芯片不合格.已知每颗芯片在各次置于工程手机中的得分相互独立,并且芯片公司对芯片的评分方法及标准与手机公司对芯片的评分方法及标准都一致(以频率作为概率).每颗芯片置于一个工程手机中的测试费用均为300元,每颗芯片若被认定为合格或不合格,将不再进行后续测试,现手机公司测试部门预算的测试经费为10万元,试问预算经费是否足够测试完这100颗芯片?请说明理由.

20.(12分)[2018·石家庄一检]已知函数.

(1)若,求函数的图像在点处的切线方程;

(2)若函数有两个极值点,,且,求证:.

21.(12分)已知变换将平面上的点,分别变换为点,.设变换对应的矩阵为.

(1)求矩阵;

(2)求矩阵的特征值.

22.(10分)如图,四棱锥的底面ABCD是正方形,为等边三角形,M,N分别是AB,AD的中点,且平面平面ABCD.

(1)证明:平面PNB;

(2)问棱PA上是否存在一点E,使平面DEM,求的值

参考答案

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1、A

【解析】

用偶函数的图象关于轴对称排除,用排除,用排除.故只能选.

【详解】

因为,

所以函数为偶函数,图象关于轴对称,故可以排除;

因为,故排除,

因为由图象知,排除.

故选:A

您可能关注的文档

文档评论(0)

je970105 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档