备战中考数学易错题精选-一元二次方程组练习题含答案解析.docVIP

备战中考数学易错题精选-一元二次方程组练习题含答案解析.doc

  1. 1、本文档共14页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多

备战中考数学易错题精选-一元二次方程组练习题含答案解析

一、一元二次方程

1.如图,抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为x=﹣1.

(1)求抛物线的解析式并写出其顶点坐标;

(2)若动点P在第二象限内的抛物线上,动点N在对称轴l上.

①当PA⊥NA,且PA=NA时,求此时点P的坐标;

②当四边形PABC的面积最大时,求四边形PABC面积的最大值及此时点P的坐标.

【答案】(1)y=﹣(x+1)2+4,顶点坐标为(﹣1,4);(2)①点P(﹣﹣1,2);②P(﹣,)

【解析】

试题分析:(1)将B、C的坐标代入已知的抛物线的解析式,由对称轴为即可得到抛物线的解析式;

(2)①首先求得抛物线与x轴的交点坐标,然后根据已知条件得到PD=OA,从而得到方程求得x的值即可求得点P的坐标;

②,表示出来得到二次函数,求得最值即可.

试题解析:(1)∵抛物线与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为,∴,解得:,∴二次函数的解析式为=,∴顶点坐标为(﹣1,4);

(2)令,解得或,∴点A(﹣3,0),B(1,0),作PD⊥x轴于点D,∵点P在上,∴设点P(x,),

①∵PA⊥NA,且PA=NA,∴△PAD≌△AND,∴OA=PD,即,解得x=(舍去)或x=,∴点P(,2);

②设P(x,y),则,∵

=OB?OC+AD?PD+(PD+OC)?OD==

===,

∴当x=时,=,当x=时,=,此时P(,).

考点:1.二次函数综合题;2.二次函数的最值;3.最值问题;4.压轴题.

2.阅读下列材料

计算:(1﹣﹣)×(+)﹣(1﹣﹣)(+),令+=t,则:

原式=(1﹣t)(t+)﹣(1﹣t﹣)t=t+﹣t2﹣+t2=

在上面的问题中,用一个字母代表式子中的某一部分,能达到简化计算的目的,这种思想方法叫做“换元法”,请用“换元法”解决下列问题:

(1)计算:(1﹣﹣)×(+)﹣(1﹣﹣)×(+)

(2)因式分解:(a2﹣5a+3)(a2﹣5a+7)+4

(3)解方程:(x2+4x+1)(x2+4x+3)=3

【答案】(1);(2)(a2﹣5a+5)2;(3)x1=0,x2=﹣4,x3=x4=﹣2

【解析】

【分析】

(1)仿照材料内容,令+=t代入原式计算.

(2)观察式子找相同部分进行换元,令a2﹣5a=t代入原式进行因式分解,最后要记得把t换为a.

(3)观察式子找相同部分进行换元,令x2+4x=t代入原方程,即得到关于t的一元二次方程,得到t的两个解后要代回去求出4个x的解.

【详解】

(1)令+=t,则:

原式=(1﹣t)(t+)﹣(1﹣t﹣)t=t+﹣t2﹣﹣t+t2+=

(2)令a2﹣5a=t,则:

原式=(t+3)(t+7)+4=t2+7t+3t+21+4=t2+10t+25=(t+5)2=(a2﹣5a+5)2

(3)令x2+4x=t,则原方程转化为:

(t+1)(t+3)=3

t2+4t+3=3

t(t+4)=0

∴t1=0,t2=﹣4

当x2+4x=0时,

x(x+4)=0

解得:x1=0,x2=﹣4

当x2+4x=﹣4时,

x2+4x+4=0

(x+2)2=0

解得:x3=x4=﹣2

【点睛】

本题考查用换元法进行整式的运算,因式分解,解一元二次方程.利用换元法一般可达到降次效果,从而简便运算.

3.已知:关于x的方程x2-4mx+4m2-1=0.

(1)不解方程,判断方程的根的情况;

(2)若△ABC为等腰三角形,BC=5,另外两条边是方程的根,求此三角形的周长.2

【答案】(1)有两个不相等的实数根(2)周长为13或17

【解析】

试题分析:(1)根据方程的系数结合根的判别式,可得出△=4>0,由此可得出:无论m为何值,该方程总有两个不相等的实数根;

(2)根据等腰三角形的性质及△>0,可得出5是方程x2﹣4mx+4m2﹣1=0的根,将x=5代入原方程可求出m值,通过解方程可得出方程的解,在利用三角形的周长公式即可求出结论.

试题解析:解:(1)∵△=(﹣4m)2﹣4(4m2﹣1)=4>0,∴无论m为何值,该方程总有两个不相等的实数根.

(2)∵△>0,△ABC为等腰三角形,另外两条边是方程的根,∴5是方程x2﹣4mx+4m2﹣1=0的根.

将x=5代入原方程,得:25﹣20m+4m2﹣1=0,解得:m1=2,m2=3.

当m=2时,原方程为x2﹣8x+15=0,解得:x1=3,x2=5.∵3、5、5能够组成三角形,∴该三角形的周长为3+5+5=13;

当m=3时,原方程为x2﹣12x+35=0,解得:x1=5,x2=7.∵5、5、7能够组成三角形,∴该三角形的周长为5+5+7=17.

综上所述:此三角形的周长为13或17.

文档评论(0)

180****1080 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档