广东省广州市增城区高级中学2024年高三数学试题B版查缺补漏题.doc

广东省广州市增城区高级中学2024年高三数学试题B版查缺补漏题.doc

此“教育”领域文档为创作者个人分享资料,不作为权威性指导和指引,仅供参考
  1. 1、本文档共20页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多

广东省广州市增城区高级中学2024年高三数学试题B版查缺补漏题

注意事项:

1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.双曲线的渐近线方程为()

A. B.

C. D.

2.已知偶函数在区间内单调递减,,,,则,,满足()

A. B. C. D.

3.如图在直角坐标系中,过原点作曲线的切线,切点为,过点分别作、轴的垂线,垂足分别为、,在矩形中随机选取一点,则它在阴影部分的概率为()

A. B. C. D.

4.若复数满足(是虚数单位),则的虚部为()

A. B. C. D.

5.甲、乙、丙三人相约晚上在某地会面,已知这三人都不会违约且无两人同时到达,则甲第一个到、丙第三个到的概率是()

A. B. C. D.

6.曲线在点处的切线方程为,则()

A. B. C.4 D.8

7.已知,则()

A. B. C. D.

8.在平面直角坐标系中,将点绕原点逆时针旋转到点,设直线与轴正半轴所成的最小正角为,则等于()

A. B. C. D.

9.已知,,,则a,b,c的大小关系为()

A. B. C. D.

10.已知且,函数,若,则()

A.2 B. C. D.

11.“哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数(素数)之和,也就是我们所谓的“1+1”问题.它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的成绩.若将6拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为()

A. B. C. D.

12.已知复数,则()

A. B. C. D.

二、填空题:本题共4小题,每小题5分,共20分。

13.已知不等式组所表示的平面区域为,则区域的外接圆的面积为______.

14.函数与的图象上存在关于轴的对称点,则实数的取值范围为______.

15.(5分)函数的定义域是____________.

16.某种牛肉干每袋的质量服从正态分布,质检部门的检测数据显示:该正态分布为,.某旅游团游客共购买这种牛肉干100袋,估计其中质量低于的袋数大约是_____袋.

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。

17.(12分)健身馆某项目收费标准为每次60元,现推出会员优惠活动:具体收费标准如下:

现随机抽取了100为会员统计它们的消费次数,得到数据如下:

假设该项目的成本为每次30元,根据给出的数据回答下列问题:

(1)估计1位会员至少消费两次的概率

(2)某会员消费4次,求这4次消费获得的平均利润;

(3)假设每个会员每星期最多消费4次,以事件发生的频率作为相应事件的概率,从会员中随机抽取两位,记从这两位会员的消费获得的平均利润之差的绝对值为,求的分布列及数学期望

18.(12分)已知函数.

(1)当时,解不等式;

(2)设不等式的解集为,若,求实数的取值范围.

19.(12分)如图,在四棱锥中,平面ABCD平面PAD,,,,,E是PD的中点.

证明:;

设,点M在线段PC上且异面直线BM与CE所成角的余弦值为,求二面角的余弦值.

20.(12分)已知函数.

(1)讨论函数单调性;

(2)当时,求证:.

21.(12分)设点,动圆经过点且和直线相切.记动圆的圆心的轨迹为曲线.

(1)求曲线的方程;

(2)过点的直线与曲线交于、两点,且直线与轴交于点,设,,求证:为定值.

22.(10分)如图,在三棱锥中,平面平面,,.点,,分别为线段,,的中点,点是线段的中点.

(1)求证:平面.

(2)判断与平面的位置关系,并证明.

参考答案

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1、A

【解析】

将双曲线方程化为标准方程为,其渐近线方程为,化简整理即得渐近线方程.

【详解】

双曲线得,则其渐近线方程为,

整理得.

故选:A

【点睛】

本题主要考查了双曲线的标准方程,双曲线的简单性质的应用.

2、D

【解析】

首先由函数为偶函数,可得函数在内单调递增,再由,即可判定大小

【详解】

因为偶函数在减,所以在上增,

,,,∴.

故选:D

【点睛】

本题

文档评论(0)

je970105 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档