山东省枣庄市第八中学2023-2024学年高三下学期一模预考数学试题.doc

山东省枣庄市第八中学2023-2024学年高三下学期一模预考数学试题.doc

此“教育”领域文档为创作者个人分享资料,不作为权威性指导和指引,仅供参考
  1. 1、本文档共20页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多

山东省枣庄市第八中学2022-2023学年高三下学期一模预考数学试题

注意事项

1.考试结束后,请将本试卷和答题卡一并交回.

2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.

3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.

4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.

5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若函数f(x)=a|2x-4|(a0,a≠1)满足f(1)=,则f(x)的单调递减区间是()

A.(-∞,2] B.[2,+∞)

C.[-2,+∞) D.(-∞,-2]

2.已知平面向量,满足,,且,则()

A.3 B. C. D.5

3.某市气象部门根据2018年各月的每天最高气温平均数据,绘制如下折线图,那么,下列叙述错误的是()

A.各月最高气温平均值与最低气温平均值总体呈正相关

B.全年中,2月份的最高气温平均值与最低气温平均值的差值最大

C.全年中各月最低气温平均值不高于10°C的月份有5个

D.从2018年7月至12月该市每天最高气温平均值与最低气温平均值呈下降趋势

4.设,,分别是中,,所对边的边长,则直线与的位置关系是()

A.平行 B.重合

C.垂直 D.相交但不垂直

5.已知等差数列的前n项和为,且,则()

A.4 B.8 C.16 D.2

6.已知函数,,若对任意的总有恒成立,记的最小值为,则最大值为()

A.1 B. C. D.

7.将函数的图像向右平移个单位长度,再将图像上各点的横坐标伸长到原来的6倍(纵坐标不变),得到函数的图像,若为奇函数,则的最小值为()

A. B. C. D.

8.已知函数(,且)在区间上的值域为,则()

A. B. C.或 D.或4

9.已知向量,,设函数,则下列关于函数的性质的描述正确的是

A.关于直线对称 B.关于点对称

C.周期为 D.在上是增函数

10.对于定义在上的函数,若下列说法中有且仅有一个是错误的,则错误的一个是()

A.在上是减函数 B.在上是增函数

C.不是函数的最小值 D.对于,都有

11.已知函数,关于x的方程f(x)=a存在四个不同实数根,则实数a的取值范围是()

A.(0,1)∪(1,e) B.

C. D.(0,1)

12.已知函数是上的偶函数,且当时,函数是单调递减函数,则,,的大小关系是()

A. B.

C. D.

二、填空题:本题共4小题,每小题5分,共20分。

13.不等式的解集为________

14.为了抗击新型冠状病毒肺炎,某医药公司研究出一种消毒剂,据实验表明,该药物释放量与时间的函数关系为(如图所示),实验表明,当药物释放量对人体无害.(1)______;(2)为了不使人身体受到药物伤害,若使用该消毒剂对房间进行消毒,则在消毒后至少经过______分钟人方可进入房间.

15.函数的单调增区间为__________.

16.如果抛物线上一点到准线的距离是6,那么______.

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。

17.(12分)在平面直角坐标系中,已知抛物线的焦点为,准线为,是抛物线上上一点,且点的横坐标为,.

(1)求抛物线的方程;

(2)过点的直线与抛物线交于、两点,过点且与直线垂直的直线与准线交于点,设的中点为,若、、四点共圆,求直线的方程.

18.(12分)设函数f(x)=|x﹣a|+|x|(a>0).

(1)若不等式f(x)﹣|x|≥4x的解集为{x|x≤1},求实数a的值;

(2)证明:f(x).

19.(12分)已知点为圆:上的动点,为坐标原点,过作直线的垂线(当、重合时,直线约定为轴),垂足为,以为极点,轴的正半轴为极轴建立极坐标系.

(1)求点的轨迹的极坐标方程;

(2)直线的极坐标方程为,连接并延长交于,求的最大值.

20.(12分)如图,平面四边形为直角梯形,,,,将绕着翻折到.

(1)为上一点,且,当平面时,求实数的值;

(2)当平面与平面所成的锐二面角大小为时,求与平面所成角的正弦.

21.(12分)已知{an}是一个公差大于0的等差数列,且满足a3a5=45,a2+a6=1.

(I)求{an}的通项公式;

(Ⅱ)若数列{bn}满足:…,求{bn}的前n项和.

22.(10分)购买一辆某品牌新能源汽车,在行驶三年后,

文档评论(0)

胜胜 + 关注
实名认证
内容提供者

爱分享有用的知识帮助到大家

1亿VIP精品文档

相关文档