山东省威海市2024年高三5月联考数学试题.doc

山东省威海市2024年高三5月联考数学试题.doc

此“教育”领域文档为创作者个人分享资料,不作为权威性指导和指引,仅供参考
  1. 1、本文档共22页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多

山东省威海市2023年高三5月联考数学试题

请考生注意:

1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.如图所示,已知某几何体的三视图及其尺寸(单位:),则该几何体的表面积为()

A. B.

C. D.

2.已知数列满足,且,则的值是()

A. B. C.4 D.

3.函数的图象如图所示,则它的解析式可能是()

A. B.

C. D.

4.已知函数在上有两个零点,则的取值范围是()

A. B. C. D.

5.已知函数,若,,,则a,b,c的大小关系是()

A. B. C. D.

6.设为非零向量,则“”是“与共线”的()

A.充分而不必要条件 B.必要而不充分条件

C.充要条件 D.既不充分也不必要条件

7.已知双曲线的一条渐近线方程是,则双曲线的离心率为()

A. B. C. D.

8.已知分别为双曲线的左、右焦点,点是其一条渐近线上一点,且以为直径的圆经过点,若的面积为,则双曲线的离心率为()

A. B. C. D.

9.已知函数,对任意的,,当时,,则下列判断正确的是()

A. B.函数在上递增

C.函数的一条对称轴是 D.函数的一个对称中心是

10.从5名学生中选出4名分别参加数学,物理,化学,生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为

A.48 B.72 C.90 D.96

11.一个正四棱锥形骨架的底边边长为,高为,有一个球的表面与这个正四棱锥的每个边都相切,则该球的表面积为()

A. B. C. D.

12.已知复数满足,其中是虚数单位,则复数在复平面中对应的点到原点的距离为()

A. B. C. D.

二、填空题:本题共4小题,每小题5分,共20分。

13.已知两点,,若直线上存在点满足,则实数满足的取值范围是__________.

14.如图,半球内有一内接正四棱锥,该四棱锥的体积为,则该半球的体积为__________.

15.已知函数()在区间上的值小于0恒成立,则的取值范围是________.

16.三棱锥中,点是斜边上一点.给出下列四个命题:

①若平面,则三棱锥的四个面都是直角三角形;

②若,,,平面,则三棱锥的外接球体积为;

③若,,,在平面上的射影是内心,则三棱锥的体积为2;

④若,,,平面,则直线与平面所成的最大角为.

其中正确命题的序号是__________.(把你认为正确命题的序号都填上)

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。

17.(12分)已知函数,.

(1)若不等式对恒成立,求的最小值;

(2)证明:.

(3)设方程的实根为.令若存在,,,使得,证明:.

18.(12分)为增强学生的法治观念,营造“学宪法、知宪法、守宪法”的良好校园氛围,某学校开展了“宪法小卫士”活动,并组织全校学生进行法律知识竞赛.现从全校学生中随机抽取50名学生,统计他们的竞赛成绩,已知这50名学生的竞赛成绩均在[50,100]内,并得到如下的频数分布表:

分数段

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

人数

5

15

15

12

3

(1)将竞赛成绩在内定义为“合格”,竞赛成绩在内定义为“不合格”.请将下面的列联表补充完整,并判断是否有的把握认为“法律知识竞赛成绩是否合格”与“是否是高一新生”有关?

合格

不合格

合计

高一新生

12

非高一新生

6

合计

(2)在(1)的前提下,按“竞赛成绩合格与否”进行分层抽样,从这50名学生中抽取5名学生,再从这5名学生中随机抽取2名学生,求这2名学生竞赛成绩都合格的概率.

参考公式及数据:,其中.

19.(12分)已知函数.

(1)若,求不等式的解集;

(2)已知,若对于任意恒成立,求的取值范围.

20.(12分)在直角坐标系中,直线的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求和的直角坐标方程;

(2)已知为曲线上的一个动点,求线段的中点到直线的最大距离.

21.(12分)为了拓展城市的旅游业,实现不同市区间的物资交流,政府决定在市与市之间建一条直达公路,中间设有至少8个的偶数个十字路口,记为,现规划在每个路口处种植一颗杨树或者木棉树,且种植每种树木的概率均为.

(1)现征求两市居民的种植意见,看看哪一种植物更受欢迎,得到的数据如下所示:

A市居民

B市居民

喜欢

文档评论(0)

胜胜 + 关注
实名认证
内容提供者

爱分享有用的知识帮助到大家

1亿VIP精品文档

相关文档