山东省滕州实验中学2023-2024学年第二学期高三第三次模拟考试数学试题.doc

山东省滕州实验中学2023-2024学年第二学期高三第三次模拟考试数学试题.doc

此“教育”领域文档为创作者个人分享资料,不作为权威性指导和指引,仅供参考
  1. 1、本文档共23页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多

山东省滕州实验中学2022-2023学年第二学期高三第三次模拟考试数学试题

注意事项:

1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知函数,,且,则()

A.3 B.3或7 C.5 D.5或8

2.给甲、乙、丙、丁四人安排泥工、木工、油漆三项工作,每项工作至少一人,每人做且仅做一项工作,甲不能安排木工工作,则不同的安排方法共有()

A.12种 B.18种 C.24种 D.64种

3.已知函数(其中为自然对数的底数)有两个零点,则实数的取值范围是()

A. B.

C. D.

4.“纹样”是中国艺术宝库的瑰宝,“火纹”是常见的一种传统纹样.为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为3的正方形将其包含在内,并向该正方形内随机投掷200个点,己知恰有80个点落在阴影部分据此可估计阴影部分的面积是()

A. B. C.10 D.

5.若x,y满足约束条件的取值范围是

A.[0,6] B.[0,4] C.[6, D.[4,

6.集合中含有的元素个数为()

A.4 B.6 C.8 D.12

7.设不等式组,表示的平面区域为,在区域内任取一点,则点的坐标满足不等式的概率为

A. B.

C. D.

8.已知函数的最小正周期为,且满足,则要得到函数的图像,可将函数的图像()

A.向左平移个单位长度 B.向右平移个单位长度

C.向左平移个单位长度 D.向右平移个单位长度

9.某校为提高新入聘教师的教学水平,实行“老带新”的师徒结对指导形式,要求每位老教师都有徒弟,每位新教师都有一位老教师指导,现选出3位老教师负责指导5位新入聘教师,则不同的师徒结对方式共有()种.

A.360 B.240 C.150 D.120

10.设是虚数单位,则“复数为纯虚数”是“”的()

A.充要条件 B.必要不充分条件

C.既不充分也不必要条件 D.充分不必要条件

11.如图是正方体截去一个四棱锥后的得到的几何体的三视图,则该几何体的体积是()

A. B. C. D.

12.某三棱锥的三视图如图所示,网格纸上小正方形的边长为,则该三棱锥外接球的表面积为()

A. B. C. D.

二、填空题:本题共4小题,每小题5分,共20分。

13.设f(x)=etx(t>0),过点P(t,0)且平行于y轴的直线与曲线C:y=f(x)的交点为Q,曲线C过点Q的切线交x轴于点R,若S(1,f(1)),则△PRS的面积的最小值是_____.

14.在矩形ABCD中,,,点E,F分别为BC,CD边上动点,且满足,则的最大值为________.

15.在平面直角坐标系中,双曲线的焦距为,若过右焦点且与轴垂直的直线与两条渐近线围成的三角形面积为,则双曲线的离心率为____________.

16.设,则“”是“”的__________条件.

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。

17.(12分)已知曲线的极坐标方程为,直线的参数方程为(为参数).

(1)求曲线的直角坐标方程与直线的普通方程;

(2)已知点,直线与曲线交于、两点,求.

18.(12分)已知椭圆的右焦点为,过点且斜率为的直线与椭圆交于两点,线段的中点为为坐标原点.

(1)证明:点在轴的右侧;

(2)设线段的垂直平分线与轴、轴分别相交于点.若与的面积相等,求直线的斜率

19.(12分)对于正整数,如果个整数满足,

且,则称数组为的一个“正整数分拆”.记均为偶数的“正整数分拆”的个数为均为奇数的“正整数分拆”的个数为.

(Ⅰ)写出整数4的所有“正整数分拆”;

(Ⅱ)对于给定的整数,设是的一个“正整数分拆”,且,求的最大值;

(Ⅲ)对所有的正整数,证明:;并求出使得等号成立的的值.

(注:对于的两个“正整数分拆”与,当且仅当且时,称这两个“正整数分拆”是相同的.)

20.(12分)在直角坐标系中,曲线的参数方程为(为参数),坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)若曲线、交于、两点,是曲线上的动点,求面积的最大值.

21.(12分)已知函数,直线为曲线的切线(为自然对数的底数).

(1)求实数的值;

(2

文档评论(0)

胜胜 + 关注
实名认证
内容提供者

爱分享有用的知识帮助到大家

1亿VIP精品文档

相关文档