- 1、本文档共12页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
Page
专题34等比数列及其前n项和(新高考专用)
目录
目录
【知识梳理】 2
【真题自测】 3
【考点突破】 4
【考点1】等比数列基本量的运算 4
【考点2】等比数列的判定与证明 5
【考点3】等比数列的性质及应用 7
【分层检测】 8
【基础篇】 8
【能力篇】 10
【培优篇】 11
考试要求:
1.理解等比数列的概念.
2.掌握等比数列的通项公式与前n项和公式.
3.了解等比数列与指数函数的关系.
知识梳理
知识梳理
1.等比数列的概念
(1)定义:如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q表示(显然q≠0).
数学语言表达式:eq\f(an,an-1)=q(n≥2,q为非零常数).
(2)等比中项:如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项.此时G2=ab.
2.等比数列的通项公式及前n项和公式
(1)若等比数列{an}的首项为a1,公比是q,则其通项公式为an=a1qn-1;
通项公式的推广:an=amqn-m.
(2)等比数列的前n项和公式:当q=1时,Sn=na1;当q≠1时,Sn=eq\f(a1(1-qn),1-q)=eq\f(a1-anq,1-q).
3.等比数列的性质
已知{an}是等比数列,Sn是数列{an}的前n项和.
(1)若k+l=m+n(k,l,m,n∈N*),则有ak·al=am·an.
(2)相隔等距离的项组成的数列仍是等比数列,即ak,ak+m,ak+2m,…仍是等比数列,公比为qm.
(3)当q≠-1,或q=-1且n为奇数时,Sn,S2n-Sn,S3n-S2n,…仍成等比数列,其公比为qn.
1.若数列{an},{bn}(项数相同)是等比数列,则数列{c·an}(c≠0),{|an|},{aeq\o\al(2,n)},eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(1,an))),{an·bn},eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(an,bn)))也是等比数列.
2.由an+1=qan,q≠0,并不能立即断言{an}为等比数列,还要验证a1≠0.
3.在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形而导致解题失误.
4.三个数成等比数列,通常设为eq\f(x,q),x,xq;四个符号相同的数成等比数列,通常设为eq\f(x,q3),eq\f(x,q),xq,xq3.
真题自测
真题自测
一、单选题
1.(2023·全国·高考真题)设等比数列的各项均为正数,前n项和,若,,则(????)
A. B. C.15 D.40
2.(2023·全国·高考真题)记为等比数列的前n项和,若,,则(????).
A.120 B.85 C. D.
3.(2022·全国·高考真题)已知等比数列的前3项和为168,,则(????)
A.14 B.12 C.6 D.3
二、填空题
4.(2024·北京·高考真题)设与是两个不同的无穷数列,且都不是常数列.记集合,给出下列4个结论:
①若与均为等差数列,则M中最多有1个元素;
②若与均为等比数列,则M中最多有2个元素;
③若为等差数列,为等比数列,则M中最多有3个元素;
④若为递增数列,为递减数列,则M中最多有1个元素.
其中正确结论的序号是.
5.(2024·上海·高考真题)无穷等比数列满足首项,记,若对任意正整数集合是闭区间,则的取值范围是.
6.(2023·北京·高考真题)我国度量衡的发展有着悠久的历史,战国时期就已经出现了类似于砝码的、用来测量物体质量的“环权”.已知9枚环权的质量(单位:铢)从小到大构成项数为9的数列,该数列的前3项成等差数列,后7项成等比数列,且,则;数列所有项的和为.
7.(2023·全国·高考真题)记为等比数列的前项和.若,则的公比为.
8.(2023·全国·高考真题)已知为等比数列,,,则.
考点突破
考点突破
【考点1】等比数列基本量的运算
一、单选题
1.(2024·河南·三模)设为数列的前项和,若,则(????)
A.4 B.8 C. D.
2.(23-24高二下·黑龙江齐齐哈尔·期中)在各项为正的等比数列中,与的等比中项为,则(???)
A.1 B.2 C.3 D.4
二、多选题
3.(2024·江苏南通·模拟预测)在数列中,若对,都有(为常数),则称数列为“等差比数列”,为公差比,设数列的前项和是,则下列说法一定正确的是(????)
A.等差数列是等差比数列
B.若等比数列是等差
您可能关注的文档
- 2025年高考数学一轮复习讲义专题01 集合解析版.docx
- 2025年高考数学一轮复习讲义专题02 常用逻辑用语解析版.docx
- 2025年高考数学一轮复习讲义专题03 不等关系与不等式性质解析版.docx
- 2025年高考数学一轮复习讲义专题05 二次函数与一元二次方程、不等式原卷版.docx
- 2025年高考数学一轮复习讲义专题06 函数的概念及其表示原卷版.docx
- 2025年高考数学一轮复习讲义专题07 函数的单调性与最大(小)值解析版.docx
- 2025年高考数学一轮复习讲义专题09 幂函数与二次函数解析版.docx
- 2025年高考数学一轮复习讲义专题11 对数与对数函数解析版.docx
- 2025年高考数学一轮复习讲义专题12 函数的图象解析版.docx
- 2025年高考数学一轮复习讲义专题14 函数模型及其应用原卷版.docx
文档评论(0)