山东省潍坊市临朐一中2024届高三年级第一次模拟数学试题.doc

山东省潍坊市临朐一中2024届高三年级第一次模拟数学试题.doc

此“教育”领域文档为创作者个人分享资料,不作为权威性指导和指引,仅供参考
  1. 1、本文档共21页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多

山东省潍坊市临朐一中2023届高三年级第一次模拟数学试题

注意事项:

1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。

2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。

4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知抛物线上一点的纵坐标为4,则点到抛物线焦点的距离为()

A.2 B.3 C.4 D.5

2.已知函数,若恒成立,则满足条件的的个数为()

A.0 B.1 C.2 D.3

3.函数的图象大致为()

A. B.

C. D.

4.如图,某几何体的三视图是由三个边长为2的正方形和其内部的一些虚线构成的,则该几何体的体积为()

A. B. C.6 D.与点O的位置有关

5.运行如图所示的程序框图,若输出的值为300,则判断框中可以填()

A. B. C. D.

6.在中,角,,的对边分别为,,,若,,,则()

A. B.3 C. D.4

7.已知斜率为2的直线l过抛物线C:的焦点F,且与抛物线交于A,B两点,若线段AB的中点M的纵坐标为1,则p=()

A.1 B. C.2 D.4

8.执行如图所示的程序框图,当输出的时,则输入的的值为()

A.-2 B.-1 C. D.

9.某人2018年的家庭总收人为元,各种用途占比如图中的折线图,年家庭总收入的各种用途占比统计如图中的条形图,已知年的就医费用比年的就医费用增加了元,则该人年的储畜费用为()

A.元 B.元 C.元 D.元

10.的内角的对边分别为,已知,则角的大小为()

A. B. C. D.

11.已知随机变量满足,,.若,则()

A., B.,

C., D.,

12.设,分别是椭圆的左、右焦点,过的直线交椭圆于,两点,且,,则椭圆的离心率为()

A. B. C. D.

二、填空题:本题共4小题,每小题5分,共20分。

13.(x+y)(2x-y)5的展开式中x3y3的系数为________.

14.若,i为虚数单位,则正实数的值为______.

15.设,分别是定义在上的奇函数和偶函数,且,则_________

16.已知函数是偶函数,直线与函数的图象自左向右依次交于四个不同点A,B,C,D.若AB=BC,则实数t的值为_________.

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。

17.(12分)某保险公司给年龄在岁的民众提供某种疾病的一年期医疗保险,现从名参保人员中随机抽取名作为样本进行分析,按年龄段分成了五组,其频率分布直方图如下图所示;参保年龄与每人每年应交纳的保费如下表所示.据统计,该公司每年为这一万名参保人员支出的各种费用为一百万元.

年龄

(单位:岁)

保费

(单位:元)

(1)用样本的频率分布估计总体分布,为使公司不亏本,求精确到整数时的最小值;

(2)经调查,年龄在之间的老人每人中有人患该项疾病(以此频率作为概率).该病的治疗费为元,如果参保,保险公司补贴治疗费元.某老人年龄岁,若购买该项保险(取中的).针对此疾病所支付的费用为元;若没有购买该项保险,针对此疾病所支付的费用为元.试比较和的期望值大小,并判断该老人购买此项保险是否划算?

18.(12分)已知奇函数的定义域为,且当时,.

(1)求函数的解析式;

(2)记函数,若函数有3个零点,求实数的取值范围.

19.(12分)已知函数.

(Ⅰ)当时,求不等式的解集;

(Ⅱ)若存在满足不等式,求实数的取值范围.

20.(12分)已知函数.

(1)讨论的单调性;

(2)若在定义域内是增函数,且存在不相等的正实数,使得,证明:.

21.(12分)已知函数.

(1)当a=2时,求不等式的解集;

(2)设函数.当时,,求的取值范围.

22.(10分)如图,在四棱锥中,底面为菱形,底面,.

(1)求证:平面;

(2)若直线与平面所成的角为,求平面与平面所成锐二面角的余弦值.

参考答案

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.D

【解析】

试题分析:抛物线焦点在轴上,开口向上,所以焦点坐标为,准线方程为

文档评论(0)

胜胜 + 关注
实名认证
内容提供者

爱分享有用的知识帮助到大家

1亿VIP精品文档

相关文档