辽宁省抚顺市“六校协作体”2023-2024学年学业水平考试信息模拟卷(六)数学试题.doc

辽宁省抚顺市“六校协作体”2023-2024学年学业水平考试信息模拟卷(六)数学试题.doc

此“教育”领域文档为创作者个人分享资料,不作为权威性指导和指引,仅供参考
  1. 1、本文档共21页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多

辽宁省抚顺市“六校协作体”2022-2023学年学业水平考试信息模拟卷(六)数学试题

注意事项:

1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知随机变量服从正态分布,且,则()

A. B. C. D.

2.函数的图象与函数的图象的交点横坐标的和为()

A. B. C. D.

3.已知函数(),若函数在上有唯一零点,则的值为()

A.1 B.或0 C.1或0 D.2或0

4.运行如图程序,则输出的S的值为()

A.0 B.1 C.2018 D.2017

5.总体由编号为01,02,...,39,40的40个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表(如表)第1行的第4列和第5列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()

A.23 B.21 C.35 D.32

6.已知向量满足,且与的夹角为,则()

A. B. C. D.

7.已知双曲线的右焦点为,过原点的直线与双曲线的左、右两支分别交于两点,延长交右支于点,若,则双曲线的离心率是()

A. B. C. D.

8.已知集合,将集合的所有元素从小到大一次排列构成一个新数列,则()

A.1194 B.1695 C.311 D.1095

9.在平面直角坐标系中,已知角的顶点与原点重合,始边与轴的非负半轴重合,终边落在直线上,则()

A. B. C. D.

10.若均为任意实数,且,则的最小值为()

A. B. C. D.

11.2019年10月17日是我国第6个“扶贫日”,某医院开展扶贫日“送医下乡”医疗义诊活动,现有五名医生被分配到四所不同的乡镇医院中,医生甲被指定分配到医院,医生乙只能分配到医院或医院,医生丙不能分配到医生甲、乙所在的医院,其他两名医生分配到哪所医院都可以,若每所医院至少分配一名医生,则不同的分配方案共有()

A.18种 B.20种 C.22种 D.24种

12.已知复数满足:(为虚数单位),则()

A. B. C. D.

二、填空题:本题共4小题,每小题5分,共20分。

13.在中,,,则_________.

14.在平面直角坐标系中,曲线上任意一点到直线的距离的最小值为________.

15.已知向量,,满足,,,则的取值范围为_________.

16.在四棱锥中,是边长为的正三角形,为矩形,,.若四棱锥的顶点均在球的球面上,则球的表面积为_____.

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。

17.(12分)设函数f(x)=sin(2x-π

(I)求f(x)的最小正周期;

(II)若α∈(π6,π)且f(

18.(12分)已知函数

(1)解不等式;

(2)若均为正实数,且满足,为的最小值,求证:.

19.(12分)如图,直线y=2x-2与抛物线x2=2py(p0)交于M1,M2两点,直线y=p2与

(1)求p的值;

(2)设A是直线y=p2上一点,直线AM2交抛物线于另一点M3,直线M1M

20.(12分)已知函数,.

(1)判断函数在区间上的零点的个数;

(2)记函数在区间上的两个极值点分别为、,求证:.

21.(12分)如图1,四边形是边长为2的菱形,,为的中点,以为折痕将折起到的位置,使得平面平面,如图2.

(1)证明:平面平面;

(2)求点到平面的距离.

22.(10分)选修4-4:坐标系与参数方程

已知曲线的参数方程是(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是.

(1)写出的极坐标方程和的直角坐标方程;

(2)已知点、的极坐标分别为和,直线与曲线相交于,两点,射线与曲线相交于点,射线与曲线相交于点,求的值.

参考答案

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.C

【解析】

根据在关于对称的区间上概率相等的性质求解.

【详解】

,,

,.

故选:C.

【点睛】

本题考查正态分布的应用.掌握正态曲线的性质是解题基础.随机变量服从正态分布,则.

2.B

【解析】

根据两个函数相等,求出所有交点的横坐标,然后求和即可.

【详解】

令,有,所以或.又,所以或或或

文档评论(0)

胜胜 + 关注
实名认证
内容提供者

爱分享有用的知识帮助到大家

1亿VIP精品文档

相关文档