- 1、本文档共14页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
***第五章平行四边形4多边形的内角和与外角和(2)Contents目录01020304问题情境课堂小结合作探究例题演示巩固练习05清晨,小明沿一个五边形广场周围的小路,按逆时针方向跑步(1)小明每从一条街道转到下一条街道时,身体转过的角是哪个角?(2)他每跑完一圈,身体转过的角度之和是多少?(3)在下图中,你能求出?1+?2+?3+?4+?5的结果吗?你是怎样得到的?结论:?1+?2+?3+?4+?5=360°CABCDEADEBOβγδθα12345问题解决如果广场的形状是六边形,那么还有类似的结论吗?2.如果广场的形状是八边形呢?问题延伸1.多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角.2.在每个顶点处取这个多边形的一个外角,它们的和叫做这个多边形的外角和.概念展示多边形的外角和等于多少?方法Ⅰ:类似探究多边形的内角和的方法,由三角形、四边形、五边形…的外角和开始探究;方法Ⅱ:由n边形的内角和等于(n-2)·180°出发,探究问题。多边形的外角和等于360°(1)还有什么方法可以推导出多边形外角和公式?(2)利用多边形外角和的结论,能否推导出多边形内角和的结论?深入探究例.一个多边形的内角和等于它的外角和的3倍,它是几边形?解:设这个多边形是n边形,则它的内角和为(n-2)﹒180°,外角和为360°。则根据题意,得(n-2)﹒180°=3×360°解得n=8所以这个多边形是八边形。***
文档评论(0)