- 1、本文档共2页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
整式的加减
第一节整式
代数式
代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子.单独的一个数或者一个字母也是代数式.带有“<(≤)”“>(≥)”“=”“≠”等符号的不是代数式.
例如:ax+2b,-13,2b23,a+2等.
注意:①不包括等于号(=)、不等号(≠、≤、≥、<、>、≮、≯)、约等号≈.
②可以有绝对值.例如:|x|,|-2.25|等.
列代数式
(1)定义:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.
(2)列代数式五点注意:①仔细辨别词义.?列代数式时,要先认真审题,抓住关键词语,仔细辩析词义.如“除”与“除以”,“平方的差(或平方差)”与“差的平方”的词义区分.?②分清数量关系.要正确列代数式,只有分清数量之间的关系.?③注意运算顺序.列代数式时,一般应在语言叙述的数量关系中,先读的先写,不同级运算的语言,且又要体现出先低级运算,要把代数式中代表低级运算的这部分括起来.④规范书写格式.列代数时要按要求规范地书写.像数字与字母、字母与字母相乘可省略乘号不写,数与数相乘必须写乘号;除法可写成分数形式,带分数与字母相乘需把代分数化为假分数,书写单位名称什么时不加括号,什么时要加括号.注意代数式括号的适当运用.?⑤正确进行代换.列代数式时,有时需将题中的字母代入公式,这就要求正确进行代换.
代数式求值
(1代数式的:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值.
(2)代数式的求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.
题型简单总结以下三种:
?①已知条件不化简,所给代数式化简;
?②已知条件化简,所给代数式不化简;
?③已知条件和所给代数式都要化简.
整式
1)概念:单项式和多项式统称为整式.
他们都有次数,但是多项式没有系数,多项式的每一项是一个单项式,含有字母的项都有系数.
(2)规律方法总结:
①对整式概念的认识,凡分母中含有字母的代数式都不属于整式,在整式范围内用“+”或“-”将单项式连起来的就是多项式,不含“+”或“-”的整式绝对不是多项式,而单项式注重一个“积”字.
②对于“数”或“形”的排列规律问题,用先从开始的几个简单特例入手,对比、分析其中保持不变的部分及发展变化的部分,以及变化的规律,尤其变化时与序数几的关系,归纳出一般性的结论.
单项式
(1)单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.
用字母表示的数,同一个字母在不同的式子中可以有不同的含义,相同的字母在同一个式子中表示相同的含义.
(2)单项式的系数、次数
单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.
在判别单项式的系数时,要注意包括数字前面的符号,而形如a或-a这样的式子的系数是1或-1,不能误以为没有系数,一个单项式的次数是几,通常称这个单项式为几次单项式.
多项式
(1)几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.
(2)多项式的组成元素的单项式,即多项式的每一项都是一个单项式,单项式的个数就是多项式的项数,如果一个多项式含有a个单项式,次数是b,那么这个多项式就叫b次a项式.
第二节整式的加减
同类项
(1)定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.
同类项中所含字母可以看成是数字、单项式、多项式等.
(2)注意事项:
①一是所含字母相同,二是相同字母的指数也相同,两者缺一不可;
②同类项与系数的大小无关;
③同类项与它们所含的字母顺序无关;
④所有常数项都是同类项.
合并同类项
(1)定义:把多项式中同类项合成一项,叫做合并同类项.
(2)合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.
(3)合并同类项时要注意以下三点:
①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数;
②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;
③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.
去括号与添括号
(1)去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.
(2)去括号规律:①a+(b+c)=a+b+c,括号前是“+”号,去括号时连同它前面的“+”号一起去掉,括号内各项不变号;②a-(b-c)=a-b+c,括号前是“-”
文档评论(0)