福建省泉港市泉港一中2024年高三5月月考数学试题试卷.doc

福建省泉港市泉港一中2024年高三5月月考数学试题试卷.doc

此“教育”领域文档为创作者个人分享资料,不作为权威性指导和指引,仅供参考
  1. 1、本文档共19页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多

福建省泉港市泉港一中2024年高三5月月考数学试题试卷

注意事项:

1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”人们把此类题目称为“中国剩余定理”,若正整数除以正整数后的余数为,则记为,例如.现将该问题以程序框图的算法给出,执行该程序框图,则输出的等于().

A. B. C. D.

2.正四棱锥的五个顶点在同一个球面上,它的底面边长为,侧棱长为,则它的外接球的表面积为()

A. B. C. D.

3.根据散点图,对两个具有非线性关系的相关变量x,y进行回归分析,设u=lny,v=(x-4)2,利用最小二乘法,得到线性回归方程为=0.5v+2,则变量y的最大值的估计值是()

A.e B.e2 C.ln2 D.2ln2

4.阿波罗尼斯(约公元前262~190年)证明过这样的命题:平面内到两定点距离之比为常数的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点,间的距离为2,动点与,的距离之比为,当,,不共线时,的面积的最大值是()

A. B. C. D.

5.已知抛物线的焦点为,准线与轴的交点为,点为抛物线上任意一点的平分线与轴交于,则的最大值为

A. B. C. D.

6.已知函数,以下结论正确的个数为()

①当时,函数的图象的对称中心为;

②当时,函数在上为单调递减函数;

③若函数在上不单调,则;

④当时,在上的最大值为1.

A.1 B.2 C.3 D.4

7.已知为等腰直角三角形,,,为所在平面内一点,且,则()

A. B. C. D.

8.若2m>2n>1,则()

A. B.πm﹣n>1

C.ln(m﹣n)>0 D.

9.过双曲线的左焦点作倾斜角为的直线,若与轴的交点坐标为,则该双曲线的标准方程可能为()

A. B. C. D.

10.甲、乙、丙三人相约晚上在某地会面,已知这三人都不会违约且无两人同时到达,则甲第一个到、丙第三个到的概率是()

A. B. C. D.

11.如图所示点是抛物线的焦点,点、分别在抛物线及圆的实线部分上运动,且总是平行于轴,则的周长的取值范围是()

A. B. C. D.

12.阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、数学家和物理学家,他死后的墓碑上刻着一个“圆柱容球”的立体几何图形,为纪念他发现“圆柱内切球的体积是圆柱体积的,且球的表面积也是圆柱表面积的”这一完美的结论.已知某圆柱的轴截面为正方形,其表面积为,则该圆柱的内切球体积为()

A. B. C. D.

二、填空题:本题共4小题,每小题5分,共20分。

13.的展开式中项的系数为_______.

14.已知向量,,若向量与向量平行,则实数___________.

15.某高中共有1800人,其中高一、高二、高三年级的人数依次成等差数列,现用分层抽样的方法从中抽取60人,那么高二年级被抽取的人数为________.

16.在中,,,,则__________.

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。

17.(12分)在平面直角坐标系中,曲线的参数方程是(为参数),以原点为极点,轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.

(Ⅰ)求曲线的普通方程与直线的直角坐标方程;

(Ⅱ)已知直线与曲线交于,两点,与轴交于点,求.

18.(12分)我们称n()元有序实数组(,,…,)为n维向量,为该向量的范数.已知n维向量,其中,,2,…,n.记范数为奇数的n维向量的个数为,这个向量的范数之和为.

(1)求和的值;

(2)当n为偶数时,求,(用n表示).

19.(12分)在世界读书日期间,某地区调查组对居民阅读情况进行了调查,获得了一个容量为200的样本,其中城镇居民140人,农村居民60人.在这些居民中,经常阅读的城镇居民有100人,农村居民有30人.

(1)填写下面列联表,并判断能否有99%的把握认为经常阅读与居民居住地有关?

城镇居民

农村居民

合计

经常阅读

100

30

不经常阅读

合计

200

(2)从该地区城镇居民中,随机抽取5位居民参加一次阅读交流活动,记这5位居民中经常阅读的人数为,若用样本的频率作为概率,求随机变量的期望.

附:,其中.

0

文档评论(0)

je970105 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档