安徽省滁州市第三中学2023-2024学年高三下期末质量调研(一模)数学试题.doc

安徽省滁州市第三中学2023-2024学年高三下期末质量调研(一模)数学试题.doc

此“教育”领域文档为创作者个人分享资料,不作为权威性指导和指引,仅供参考
  1. 1、本文档共20页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多

安徽省滁州市第三中学2023-2024学年高三下期末质量调研(一模)数学试题

考生须知:

1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设过点的直线分别与轴的正半轴和轴的正半轴交于两点,点与点关于轴对称,为坐标原点,若,且,则点的轨迹方程是()

A. B.

C. D.

2.已知某批零件的长度误差(单位:毫米)服从正态分布,从中随机取一件,其长度误差落在区间(3,6)内的概率为()

(附:若随机变量ξ服从正态分布,则,

.)

A.4.56% B.13.59% C.27.18% D.31.74%

3.双曲线:(),左焦点到渐近线的距离为2,则双曲线的渐近线方程为()

A. B. C. D.

4.若复数在复平面内对应的点在第二象限,则实数的取值范围是()

A. B. C. D.

5.若直线与圆相交所得弦长为,则()

A.1 B.2 C. D.3

6.已知数列的前项和为,且,,则()

A. B. C. D.

7.某三棱锥的三视图如图所示,则该三棱锥的体积为

A. B. C.2 D.

8.已知等差数列的前项和为,若,,则数列的公差为()

A. B. C. D.

9.在棱长为2的正方体ABCD?A1B1C1D1中,P为A1D1的中点,若三棱锥P?ABC的四个顶点都在球O的球面上,则球O的表面积为()

A.12? B. C. D.10?

10.将函数的图像向左平移个单位长度后,得到的图像关于坐标原点对称,则的最小值为()

A. B. C. D.

11.已知△ABC中,.点P为BC边上的动点,则的最小值为()

A.2 B. C. D.

12.已知四棱锥,底面ABCD是边长为1的正方形,,平面平面ABCD,当点C到平面ABE的距离最大时,该四棱锥的体积为()

A. B. C. D.1

二、填空题:本题共4小题,每小题5分,共20分。

13.若函数满足:①是偶函数;②的图象关于点对称.则同时满足①②的,的一组值可以分别是__________.

14.函数的定义域为__________.

15.正三棱柱的底面边长为2,侧棱长为,为中点,则三棱锥的体积为________.

16.已知,,,则的最小值是__.

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。

17.(12分)在以为顶点的五面体中,底面为菱形,,,,二面角为直二面角.

(Ⅰ)证明:;

(Ⅱ)求二面角的余弦值.

18.(12分)在平面直角坐标系xOy中,曲线C的参数方程为(为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.

(1)求曲线C的极坐标方程和直线l的直角坐标方程;

(2)若射线与曲线C交于点A(不同于极点O),与直线l交于点B,求的最大值.

19.(12分)已知圆,定点,为平面内一动点,以线段为直径的圆内切于圆,设动点的轨迹为曲线

(1)求曲线的方程

(2)过点的直线与交于两点,已知点,直线分别与直线交于两点,线段的中点是否在定直线上,若存在,求出该直线方程;若不是,说明理由.

20.(12分)椭圆:()的离心率为,它的四个顶点构成的四边形面积为.

(1)求椭圆的方程;

(2)设是直线上任意一点,过点作圆的两条切线,切点分别为,,求证:直线恒过一个定点.

21.(12分)已知抛物线C:x2?4py(p为大于2的质数)的焦点为F,过点F且斜率为k(k?0)的直线交C于A,B两点,线段AB的垂直平分线交y轴于点E,抛物线C在点A,B处的切线相交于点G.记四边形AEBG的面积为S.

(1)求点G的轨迹方程;

(2)当点G的横坐标为整数时,S是否为整数?若是,请求出所有满足条件的S的值;若不是,请说明理由.

22.(10分)设函数.

(1)若恒成立,求整数的最大值;

(2)求证:.

参考答案

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1、A

【解析】

设坐标,根据向量坐标运算表示出,从而可利用表示出;由坐标运算表示出,代入整理可得所求的轨迹方程.

【详解】

设,,其中,

,即

关于轴对称

故选:

【点睛】

本题考查动点轨迹方程的求解,涉及到平面向量的坐标运算、数量积运算;关键是利用动点坐标表示出变量,根据平面向量数量积的坐

文档评论(0)

je970105 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档