安徽省巢湖市2023-2024学年高三下学期第三次月考试卷(数学试题文).doc

安徽省巢湖市2023-2024学年高三下学期第三次月考试卷(数学试题文).doc

此“教育”领域文档为创作者个人分享资料,不作为权威性指导和指引,仅供参考
  1. 1、本文档共20页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多

安徽省巢湖市2023-2024学年高三下学期第三次月考试卷(数学试题文)

请考生注意:

1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.如图所示的“数字塔”有以下规律:每一层最左与最右的数字均为2,除此之外每个数字均为其两肩的数字之积,则该“数字塔”前10层的所有数字之积最接近()

A. B. C. D.

2.“”是“”的()

A.充分不必要条件 B.必要不充分条件

C.充要条件 D.既不充分也不必要条件

3.已知不重合的平面和直线,则“”的充分不必要条件是()

A.内有无数条直线与平行 B.且

C.且 D.内的任何直线都与平行

4.已知定义在R上的偶函数满足,当时,,函数(),则函数与函数的图象的所有交点的横坐标之和为()

A.2 B.4 C.5 D.6

5.已知中,角、所对的边分别是,,则“”是“”的()

A.充分不必要条件 B.必要不充分条件

C.既不充分也不必要条件 D.充分必要条件

6.函数的图象大致为

A. B. C. D.

7.△ABC中,AB=3,,AC=4,则△ABC的面积是()

A. B. C.3 D.

8.已知抛物线,F为抛物线的焦点且MN为过焦点的弦,若,,则的面积为()

A. B. C. D.

9.若(),,则()

A.0或2 B.0 C.1或2 D.1

10.已知函数的图象如图所示,则可以为()

A. B. C. D.

11.已知命题若,则,则下列说法正确的是()

A.命题是真命题

B.命题的逆命题是真命题

C.命题的否命题是“若,则”

D.命题的逆否命题是“若,则”

12.已知与之间的一组数据:

1

2

3

4

3.2

4.8

7.5

若关于的线性回归方程为,则的值为()

A.1.5 B.2.5 C.3.5 D.4.5

二、填空题:本题共4小题,每小题5分,共20分。

13.在平面直角坐标系中,若双曲线(,)的离心率为,则该双曲线的渐近线方程为________.

14.为激发学生团结协作,敢于拼搏,不言放弃的精神,某校高三5个班进行班级间的拔河比赛.每两班之间只比赛1场,目前(—)班已赛了4场,(二)班已赛了3场,(三)班已赛了2场,(四)班已赛了1场.则目前(五)班已经参加比赛的场次为__________.

15.将函数的图象向左平移个单位长度,得到一个偶函数图象,则________.

16.已知实数,满足则的取值范围是______.

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。

17.(12分)这次新冠肺炎疫情,是新中国成立以来在我国发生的传播速度最快、感染范围最广、防控难度最大的一次重大突发公共卫生事件.中华民族历史上经历过很多磨难,但从来没有被压垮过,而是愈挫愈勇,不断在磨难中成长,从磨难中奋起.在这次疫情中,全国人民展现出既有责任担当之勇、又有科学防控之智.某校高三学生也展开了对这次疫情的研究,一名同学在数据统计中发现,从2020年2月1日至2月7日期间,日期和全国累计报告确诊病例数量(单位:万人)之间的关系如下表:

日期

1

2

3

4

5

6

7

全国累计报告确诊病例数量(万人)

1.4

1.7

2.0

2.4

2.8

3.1

3.5

(1)根据表中的数据,运用相关系数进行分析说明,是否可以用线性回归模型拟合与的关系?

(2)求出关于的线性回归方程(系数精确到0.01).并预测2月10日全国累计报告确诊病例数.

参考数据:,,,.

参考公式:相关系数

回归方程中斜率和截距的最小二乘估计公式分别为:

,.

18.(12分)如图,在三棱锥中,,,,平面平面,、分别为、中点.

(1)求证:;

(2)求二面角的大小.

19.(12分)已知函数(是自然对数的底数,).

(1)求函数的图象在处的切线方程;

(2)若函数在区间上单调递增,求实数的取值范围;

(3)若函数在区间上有两个极值点,且恒成立,求满足条件的的最小值(极值点是指函数取极值时对应的自变量的值).

20.(12分)已知,函数.

(Ⅰ)若在区间上单调递增,求的值;

(Ⅱ)若恒成立,求的最大值.(参考数据:)

21.(12分)如图在四边形中,,,为中点,.

(1)求;

(2)若,求面积的最大值.

22.(10分)在直角坐标系x0y中,把曲线α为参数)上每个点的横坐标变为原来的倍,纵坐标不变,得到曲线以坐标原点为极点,以x轴正半轴为极轴

文档评论(0)

je970105 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档