第1讲 全等三角形综合讲义 2024—2025学年苏科版数学八年级上册.docxVIP

第1讲 全等三角形综合讲义 2024—2025学年苏科版数学八年级上册.docx

此“教育”领域文档为创作者个人分享资料,不作为权威性指导和指引,仅供参考
  1. 1、本文档共6页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多

PAGE

PAGE1

全等三角形综合

一、知识链接

全等三角形常见辅助线的作法有以下几种:

遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“翻折”.

遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”.

三角形中线的定义:三角形顶点和对边中点的连线

三角形中线的相关定理:直角三角形斜边的中线等于斜边的一半

等腰三角形底边的中线三线合一(底边的中线、顶角的角平分线、底边的高重合)

三角形中位线定义:连结三角形两边中点的线段叫做三角形的中位线.

三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半.

中位线判定定理:经过三角形一边中点且平行于另一边的直线必平分第三边.

中线中位线相关问题(涉及中点的问题)

见到中线(中点),我们可以联想的内容无非是倍长中线以及中位线定理,尤其是在涉及线段的等量关系时,倍长中线的应用更是较为常见.

遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“翻折”,所考知识点常常是角平分线的性质定理或逆定理.

过图形上某点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”

截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.

特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.

已知:如图,、、三点在同一直线上,、为等腰直角三角形,和是直角,求证:=和。

如图,已知是沿边中线翻折得到的,若且,求的度数。

都是等腰直角三角形,是各自的斜边,是的中点。求证:BC=EM+FN

如图所示,已知均为正三角形,,,分别为和的中点,求证:为正三角形。

如图,在中,已知,.若,则的大小为_________(度).

如图所示,在中,,为三角形内一点,,,求证:.

已知,以其各边为底边,向的外部作等腰三角形;使顶角都等于,求证:是正三角形。

已知,,、在上(靠近),且,求。

已知,如图所示,在中,,是的中点,在边上,在边上,且,如果,,求的长。

如图,是等腰直角三角形,,点,分别是边和的中点,点在射线上,且,点在射线上,且,求证:.

中,,,,,是中点,分别在上(可落在端点),满足,求的最小值(用表示)。

如图所示,,是的中点,,,求证.

您可能关注的文档

文档评论(0)

housen + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档