- 1、本文档共16页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
(中考数学必考考点总结+题型专训(全国通用))专题20等腰三角形与等边三角形篇(解析版)
(中考数学必考考点总结+题型专训(全国通用))专题20等腰三角形与等边三角形篇(解析版)
PAGE/NUMPAGES
(中考数学必考考点总结+题型专训(全国通用))专题20等腰三角形与等边三角形篇(解析版)
专题20等腰三角形与等边三角形
考点一:三角形的中位线
知识回顾
知识回顾
中位线的定义:
三角形任意两边中点的连线段叫做这个三角形的中位线.
中位线的性质:
三角形的中位线平行且等于第三边的一半.
微专题
微专题
1.(2022?南充)数学实践活动中,为了测量校园内被花坛隔开的A,B两点的距离,同学们在AB外选择一点C,测得AC,BC两边中点的距离DE为10m(如图),则A,B两点的距离是m.
【分析】利用三角形中位线定理解决问题即可.
【解答】解:∵CD=AD,CE=EB,
∴DE是△ABC的中位线,
∴AB=2DE,
∵DE=10m,
∴AB=20m,
故答案为:20.
2.(2022?福建)如图,在△ABC中,D,E分别是AB,AC的中点.若BC=12,则DE的长为.
【分析】直接利用三角形中位线定理求解.
【解答】解:∵D,E分别是AB,AC的中点,
∴DE为△ABC的中位线,
∴DE=BC=×12=6.
故答案为:6.
3.(2022?西藏)如图,如果要测量池塘两端A,B的距离,可以在池塘外取一点C,连接AC,BC,点D,E分别是AC,BC的中点,测得DE的长为25米,则AB的长为米.
【分析】应用三角形的中位线定理,计算得结论.
【解答】解:∵D,E分别是AC,BC的中点,
∴DE是△ABC的中位线.
∴AB=2DE=2×25=50(米).
故答案为:50.
4.(2022?丽水)如图,在△ABC中,D,E,F分别是BC,AC,AB的中点.若AB=6,BC=8,则四边形BDEF的周长是()
A.28 B.14 C.10 D.7
【分析】根据三角形中位线定理解答即可.
【解答】解:∵D,E,F分别是BC,AC,AB的中点,
∴DE=BF=AB=3,
∵E、F分别为AC、AB中点,
∴EF=BD=BC=4,
∴四边形BDEF的周长为:2×(3+4)=14,
故选:B.
5.(2022?眉山)在△ABC中,AB=4,BC=6,AC=8,点D,E,F分别为边AB,AC,BC的中点,则△DEF的周长为()
A.9 B.12 C.14 D.16
【分析】根据三角形的中位线平行于第三边,并且等于第三边的一半,可得出△ABC的周长=2△DEF的周长.
【解答】解:如图,点D,E,F分别为各边的中点,
∴DE、EF、DF是△ABC的中位线,
∴DE=BC=3,EF=AB=2,DF=AC=4,
∴△DEF的周长=3+2+4=9.
故选:A.
6.(2022?广东)如图,在△ABC中,BC=4,点D,E分别为AB,AC的中点,则DE=()
A. B. C.1 D.2
【分析】由题意可得DE是△ABC的中位线,再根据三角形中位线的性质即可求出DE的长度.
【解答】解:∵点D,E分别为AB,AC的中点,BC=4,
∴DE是△ABC的中位线,
∴DE=BC=×4=2,
故选:D.
7.(2022?沈阳)如图,在Rt△ABC中,∠A=30°,点D、E分别是直角边AC、BC的中点,连接DE,则∠CED的度数是()
A.70° B.60° C.30° D.20°
【分析】根据直角三角形的性质求出∠B,根据三角形中位线定理得到DE∥AB,根据平行线的性质解答即可.
【解答】解:在Rt△ABC中,∠A=30°,
则∠B=90°﹣∠A=60°,
∵D、E分别是边AC、BC的中点,
∴DE是△ABC的中位线,
∴DE∥AB,
∴∠CED=∠B=60°,
故选:B.
8.(2022?常州)如图,在△ABC中,D、E分别是AB、AC的中点.若DE=2,则BC的长是()
A.3 B.4 C.5 D.6
【分析】根据三角形中位线定理解答即可.
【解答】解:∵D、E分别是AB、AC的中点,
∴DE是△ABC的中位线,
∴BC=2DE,
∵DE=2,
∴BC=4,
故选:B.
考点二:等腰三角形
知识回顾
知识回顾
等腰三角形的定义:
有两条边相等的三角形叫做等腰三角形.其中相等的两边叫做腰,另一边叫做底.两腰构成的夹角叫做顶角,腰与底构成的夹角叫做底角.
等腰三角形的性质:
①等腰三角形的两腰相等.
②等腰三角形的两底角相等.(简称等边对等角”)
③等腰三角形底边的中线、高线以及顶角平分线相互重合.(简称底边上三线合一)
等腰三角形的判定:
①有两条边相等的三角形是等腰三角形.
②
您可能关注的文档
- (中考数学必考考点总结+题型专训(全国通用))专题16 反比例函数篇(解析版).pdf
- (中考数学必考考点总结+题型专训(全国通用))专题16 反比例函数篇(原卷版).pdf
- (中考数学必考考点总结+题型专训(全国通用))专题17 反比例函数篇(解析版).pdf
- (中考数学必考考点总结+题型专训(全国通用))专题17 反比例函数篇(原卷版).pdf
- (中考数学必考考点总结+题型专训(全国通用))专题17 几何图形初步认识篇(解析版).pdf
- (中考数学必考考点总结+题型专训(全国通用))专题17 几何图形初步认识篇(原卷版).pdf
- (中考数学必考考点总结+题型专训(全国通用))专题18 相交线与平行线篇(解析版).pdf
- (中考数学必考考点总结+题型专训(全国通用))专题18 相交线与平行线篇(原卷版).pdf
- (中考数学必考考点总结+题型专训(全国通用))专题19 三角形与全等三角形篇(解析版).docx
- (中考数学必考考点总结+题型专训(全国通用))专题19 三角形与全等三角形篇(解析版).pdf
- 第18讲 第17课 西晋的短暂统一和北方各族的内迁.docx
- 第15讲 第14课 沟通中外文明的“丝绸之路”.docx
- 第13课时 中东 欧洲西部.doc
- 第17讲 第16 课三国鼎立.docx
- 第17讲 第16课 三国鼎立 带解析.docx
- 2024_2025年新教材高中历史课时检测9近代西方的法律与教化含解析新人教版选择性必修1.doc
- 2024_2025学年高二数学下学期期末备考试卷文含解析.docx
- 山西版2024高考政治一轮复习第二单元生产劳动与经营第5课时企业与劳动者教案.docx
- 第16讲 第15课 两汉的科技和文化 带解析.docx
- 第13课 宋元时期的科技与中外交通.docx
最近下载
- 单向板肋梁楼盖计算.docx
- 作业4:工学一体化课程《小型网络安装与调试》工学一体化课程考核方案.docx VIP
- 中国画之写意画.ppt VIP
- (2019苏教)小学科学三年级上册:全册整套教案资料.pdf
- 核心素养导向的高中数学课例设计研究与实践(样例)(1).doc
- 驾驶证延期委托书模板.doc
- 作业5:工学一体化课程《小型网络安装与调试》工学一体化课程终结性考核试题.docx VIP
- 作业5:工学一体化课程《小型网络安装与调试》工学一体化课程终结性考核试题.pdf VIP
- 中国画的构图形式ppt课件.pptx
- 作业11:《小型网络安装与调试》工学一体化课程教学进度计划表.pdf VIP
文档评论(0)