- 1、本文档共9页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
专题10解析几何专题(新定义)
一、单选题
1.(2023春·浙江·高三校联考开学考试)2022年卡塔尔世界杯会徽(如图)正视图近似于伯努利双纽线,定义在平面直角坐标系xOy中(O为坐标原点),把到定点和距离之积等于的点的轨迹称为双纽线,记为Γ,已知为双纽线Γ上任意一点,有下列命题:
①双纽线Γ的方程为;
②面积最大值为;
③;
④的最大值为.
其中所有正确命题的序号是(????)
A.①② B.①②③
C.②③④ D.①②③④
2.(2023春·四川达州·高二四川省宣汉中学校考开学考试)定义:椭圆中长度为整数的焦点弦(过焦点的弦)为“好弦”.则椭圆中所有“好弦”的长度之和为(????)
A.162 B.166 C.312 D.364
3.(2023秋·湖南郴州·高二校考期末)城市的许多街道是互相垂直或平行的,因此往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.如果按照街道的垂直和平行方向建立平面直角坐标系,对两点,定义两点间“距离”为,则平面内与轴上两个不同的定点的“距离”之和等于定值(大于)的点的轨迹可以是(????)
A. B.
C. D.
4.(2022·江苏·高二专题练习)画法几何的创始人——法国数学家加斯帕尔·蒙日发现:与椭圆相切的两条垂直切线的交点的轨迹是以椭圆中心为圆心的圆.我们通常把这个圆称为该椭圆的蒙日圆.已知椭圆:的蒙日圆方程为,,分别为椭圆的左、右焦点.离心率为,为蒙日圆上一个动点,过点作椭圆的两条切线,与蒙日圆分别交于P,Q两点,若面积的最大值为36,则椭圆的长轴长为(????)
A. B. C. D.
5.(2023·全国·高三专题练习)加斯帕尔·蒙日(图1)是18~19世纪法国著名的几何学家,他在研究圆锥曲线时发现:椭圆的任意两条互相垂直的切线的交点都在同一个圆上,其圆心是椭圆的中心,这个圆被称为“蒙日圆”(图2).则椭圆的蒙日圆的半径为(????)
A.3 B.4 C.5 D.6
6.(2021秋·四川成都·高二树德中学校考阶段练习)若将一个椭圆绕其中心旋转90°,所得椭圆短轴两顶点恰好是旋转前椭圆的两焦点,这样的椭圆称为“对偶椭圆”.下列椭圆中是“对偶椭圆”的是(????)
A. B. C. D.
7.(2021春·上海闵行·高二闵行中学校考期末)若曲线上存在两个不同点处的切线重合,则称这条切线为曲线的自公切线,下列方程的曲线有自公切线的是()
A. B.
C. D.
8.(2021·辽宁沈阳·东北育才学校校考模拟预测)在平面直角坐标系中,定义称为点的“和”,其中为坐标原点,对于下列结论:(1)“和”为1的点的轨迹围成的图形面积为2;(2)设是直线上任意一点,则点的“和”的最小值为2;(3)设是直线上任意一点,则使得“和”最小的点有无数个”的充要条件是;(4)设是椭圆上任意一点,则“和”的最大值为.其中正确的结论序号为(????)
A.(1)(2)(3) B.(1)(2)(4)
C.(1)(3)(4) D.(2)(3)(4)
9.(2022秋·四川成都·高二成都外国语学校校考期中)若椭圆或双曲线上存在点,使得点到两个焦点的距离之比为,且存在,则称此椭圆或双曲线存在“点”,下列曲线中存在“点”的是(????)
A. B. C. D.
10.(2022秋·广西钦州·高二校考阶段练习)已知椭圆的焦点为、,若点在椭圆上,且满足(其中为坐标原点),则称点为“★”点.下列结论正确的是(????)
A.椭圆上的所有点都是“★”点
B.椭圆上仅有有限个点是“★”点
C.椭圆上的所有点都不是“★”点
D.椭圆上有无穷多个点(但不是所有的点)是“★”点
11.(2019秋·北京·高二北京市第十三中学校考期中)已知两定点,,若直线上存在点,使,则该直线为“型直线”,给出下列直线,其中是“型直线”的是(????)
①;②;③;④
A.①③ B.①② C.③④ D.①④
12.(2017春·吉林·高一统考期末)已知平面上一点M(5,0),若直线上存在点P使|PM|≤4,则称该直线为“切割型直线”,下列直线中是“切割型直线”的是(????)
①;②;③;④.
A.①③ B.①② C.②③ D.③④
二、多选题
13.(2022秋·福建厦门·高三厦门双十中学校考阶段练习)2021年3月30日,小米正式开始启用具备“超椭圆”数学之美的新logo.设计师的灵感来源于曲线C:.其中星形线E:常用于超轻材料的设计.则下列关于星形线说法正确的是(????)
A.E关于y轴对称
B.E上的点到x轴、y轴的距离之积不超过
C.E上的点到原点距离的最小值为
D.曲线E所围成图形的面积小于2
14.(2022·全国·高三专题练习)已知曲线C的方程为,集合,若对于任意的,都存在,使得成立,则称曲线C为
您可能关注的文档
- 专升本考试必考单词.docx
- 专升本作文模板大全.docx
- 专题01 函数与导数(数学文化)(解析版).docx
- 专题02 函数与导数(新定义)(解析版).docx
- 专题03 三角函数专题(数学文化)(解析版).docx
- 专题05 向量专题(数学文化)(原卷版).docx
- 专题06 向量专题(新定义)(原卷版).docx
- 专题08 数列专题(新定义)(原卷版).docx
- 专题11 立体几何专题(数学文化)(原卷版).docx
- 专题12 立体几何专题(新定义)(原卷版).docx
- 2024高考物理一轮复习规范演练7共点力的平衡含解析新人教版.doc
- 高中语文第5课苏轼词两首学案3新人教版必修4.doc
- 2024_2025学年高中英语课时分层作业9Unit3LifeinthefutureSectionⅢⅣ含解析新人教版必修5.doc
- 2024_2025学年新教材高中英语模块素养检测含解析译林版必修第一册.doc
- 2024_2025学年新教材高中英语单元综合检测5含解析外研版选择性必修第一册.doc
- 2024高考政治一轮复习第1单元生活与消费第三课多彩的消费练习含解析新人教版必修1.doc
- 2024_2025学年新教材高中英语WELCOMEUNITSectionⅡReadingandThi.doc
- 2024_2025学年高中历史专题九当今世界政治格局的多极化趋势测评含解析人民版必修1.docx
- 2024高考生物一轮复习第9单元生物与环境第29讲生态系统的结构和功能教案.docx
- 2024_2025学年新教材高中英语UNIT5LANGUAGESAROUNDTHEWORLDSect.doc
最近下载
- 第12课 新文化运动 课件(23张PPT).pptx
- 机载临时支护装置安装使用说明书.docx
- 中国基本国情教案(汉语国际教育).docx
- 人教版数学二年级上册第五单元《观察物体(一)》大单元整体教学设计.doc
- 第2章 直线与圆的位置关系 复习课.doc VIP
- 中职学校《金属加工与实训》全套电子教案(含教学进度计划)(配套教材:高教版中职统编)云天课件( word 版).docx
- 程家惠《洋话汉音》(升级版).doc
- onbon仰邦科技 六代三基色控制器 BX-6K系列 规格书 本压缩包包含BX-6K1、6K2、 6K3、6K4-T08、6K4-T12 5个产品的规格书。说明书用户手册.pdf
- 职业生涯规划书ppt职业生涯规划书ppt.ppt
- 卡拉OK数码功放KMA-1080KMA-980中文使用说明书.pdf
文档评论(0)