- 1、本文档共13页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
专题06向量专题(新定义)
一、单选题
1.(2023·全国·高三专题练习)定义平面向量之间的一种运算“⊙”如下:对任意的.令,下面说法错误的是(???)
A.若与共线,则
B.
C.对任意的,,
D.
2.(2022春·湖南邵阳·高一统考期中)定义.若向量,向量为单位向量,则的取值范围是(????)
A. B. C. D.
3.(2021春·云南昆明·高一云南师大附中校考期中)平面内任意给定一点和两个不共线的向量,,由平面向量基本定理,平面内任何一个向量都可以唯一表示成,的线性组合,,则把有序数组称为在仿射坐标系下的坐标,记为,在仿射坐标系下,,为非零向量,且,,则下列结论中(????)
①②若,则
③若,则???④
一定成立的结论个数是(????)
A.1 B.2 C.3 D.4
4.(2022·高一单元测试)若对于一些横纵坐标均为整数的向量,它们的模相同,但坐标不同,则称这些向量为“等模整向量”,例如向量,即为“等模整向量”,那么模为的“等模整向量”有(????)
A.4个 B.6个 C.8个 D.12个
5.(2017·四川广元·统考三模)对于个向量,若存在个不全为0的示数,使得:成立;则称向量是线性相关的,按此规定,能使向量,,线性相关的实数,则的值为(????)
A. B.0 C.1 D.2
6.(2022秋·内蒙古鄂尔多斯·高三统考期中)对任意两个非零的平面向量,定义,若平面向量满足,的夹角,且和都在集合中,则=(????)
A. B.1 C. D.
7.(2023·全国·高三专题练习)互相垂直且有公共原点的两条数轴构成平面直角坐标系,但如果平面坐标系中两条坐标轴不垂直,则这样的坐标系称为“斜坐标系”.如图,在斜坐标系中,过点P作两坐标轴的平行线,其在x轴和y轴上的截距a,b分别作为点P的x坐标和y坐标,记,则在x轴正方向和y轴正方向的夹角为的斜坐标系中,下列选项错误的是(????)
A.当时与距离为
B.点关于原点的对称点为
C.向量与平行的充要条件是
D.点到直线的距离为
8.(2022春·黑龙江大庆·高三大庆实验中学校考阶段练习)如图所示,设Ox,Oy是平面内相交成角的两条数轴,分别是与x,y轴正方向同向的单位向量,则称平面坐标系xOy为斜坐标系,若,则把有序数对叫做向量的斜坐标,记为.在的斜坐标系中,﹒则下列结论中,错误的是(????)
①;②;③;④在上的投影为
A.②③ B.②④ C.③④ D.②③④
9.(2021春·上海浦东新·高一华师大二附中校考阶段练习)如图,定义、的向量积,为当、的起点相同时,由的方向逆时针旋转到与方向相同时,旋转过的最小角,对于,,的向量积有如下的五个结论:
①;????????????②;
③;????????????④;
⑤;
其中正确结论的个数为(????)
A.1个 B.2个
C.3个 D.4个
10.(2022春·山西朔州·高一校考阶段练习)定义为两个向量,间的“距离”,若向量,满足下列条件:(ⅰ);(ⅱ);(ⅲ)对于任意的,恒有,现给出下面结论的编号,
①.②.③.④.⑤.
则以上正确的编号为(????)
A.①③ B.②④ C.③④ D.①⑤
11.(2018·湖南·统考一模)在实数集中,我们定义的大小关系“”为全体实数排了一个“序”,类似的,我们这平面向量集合上也可以定义一个称为“序”的关系,记为“”.定义如下:对于任意两个向量,,当且仅当“”或“且”,按上述定义的关系“”,给出下列四个命题:
①若,,,则;
②若,,则;
③若,则对于任意的,;
④对于任意的向量,其中,若,则.
其中正确的命题的个数为(????)
A.4 B.3 C.2 D.1
12.(2017秋·河南郑州·高三郑州一中阶段练习)若非零向量的夹角为锐角,且,则称被“同余”.已知被“同余”,则在上的投影是(???)
A. B. C. D.
13.(2022春·陕西榆林·高一榆林市第一中学校考期中)设定义一种向量积:.已知,,点在的图象上运动,点Q在的图象上运动,且满足(其中O为坐标原点),则的最大值A及最小正周期T分别为()
A.2,π B.2,4π
C.,4π D.,π
14.(2023·河北衡水·高三河北衡水中学校考阶段练习)设向量与的夹角为,定义.已知向量为单位向量,,,则(????)
A. B. C. D.
15.(2022春·浙江金华·高一浙江金华第一中学校考期中)记,设,为平面内的非零向量,则()
A. B.
C. D.
16.(2021·全国·高三专题练习)对于向量,把能够使得取到最小值的点称为的“平衡点”.如图,矩形的两条对角线相交于点,延长至,使得,联结,分别交于两点.下列的结论中,正确的是(?????)
A.的“平衡点”为.
B.的“平衡点”为的中点
您可能关注的文档
- 专升本考试必考单词.docx
- 专升本作文模板大全.docx
- 专题01 函数与导数(数学文化)(解析版).docx
- 专题02 函数与导数(新定义)(解析版).docx
- 专题03 三角函数专题(数学文化)(解析版).docx
- 专题05 向量专题(数学文化)(原卷版).docx
- 专题08 数列专题(新定义)(原卷版).docx
- 专题10 解析几何专题(新定义)(原卷版).docx
- 专题11 立体几何专题(数学文化)(原卷版).docx
- 专题12 立体几何专题(新定义)(原卷版).docx
- 2024高考物理一轮复习规范演练7共点力的平衡含解析新人教版.doc
- 高中语文第5课苏轼词两首学案3新人教版必修4.doc
- 2024_2025学年高中英语课时分层作业9Unit3LifeinthefutureSectionⅢⅣ含解析新人教版必修5.doc
- 2024_2025学年新教材高中英语模块素养检测含解析译林版必修第一册.doc
- 2024_2025学年新教材高中英语单元综合检测5含解析外研版选择性必修第一册.doc
- 2024高考政治一轮复习第1单元生活与消费第三课多彩的消费练习含解析新人教版必修1.doc
- 2024_2025学年新教材高中英语WELCOMEUNITSectionⅡReadingandThi.doc
- 2024_2025学年高中历史专题九当今世界政治格局的多极化趋势测评含解析人民版必修1.docx
- 2024高考生物一轮复习第9单元生物与环境第29讲生态系统的结构和功能教案.docx
- 2024_2025学年新教材高中英语UNIT5LANGUAGESAROUNDTHEWORLDSect.doc
最近下载
- 第12课 新文化运动 课件(23张PPT).pptx
- 机载临时支护装置安装使用说明书.docx
- 中国基本国情教案(汉语国际教育).docx
- 人教版数学二年级上册第五单元《观察物体(一)》大单元整体教学设计.doc
- 第2章 直线与圆的位置关系 复习课.doc VIP
- 中职学校《金属加工与实训》全套电子教案(含教学进度计划)(配套教材:高教版中职统编)云天课件( word 版).docx
- 程家惠《洋话汉音》(升级版).doc
- onbon仰邦科技 六代三基色控制器 BX-6K系列 规格书 本压缩包包含BX-6K1、6K2、 6K3、6K4-T08、6K4-T12 5个产品的规格书。说明书用户手册.pdf
- 职业生涯规划书ppt职业生涯规划书ppt.ppt
- 卡拉OK数码功放KMA-1080KMA-980中文使用说明书.pdf
文档评论(0)