高一数学几何概型.doc

  1. 1、本文档共4页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多

几何概型教学设计福建龙岩二中郭小峰

PAGE

PAGE5

几何概型

教学内容分析:

本课时教材选自人教A版数学必修3第三章概率部分第3.3节的内容.几何概型是概率必修章节的收尾篇,共有两个课时,本节课为第一课时,它是继古典概型之后学习的另一类等可能概型;是教材新增加的内容,对它的要求仅限于初步体会几何概型的意义.几何概型的研究,是古典概型的拓广,将古典概型试验结果有限个拓广到无限个;课本介绍几何概型主要是为了更广泛地满足随机模拟的需要.概率教学的核心问题是让学生了解随机现象与概率的意义,运用数学方法去研究不确定现象的规律,让学生初步形成用随机的观念去观察、分析、研究客观世界的态度,并获取认识世界的初步知识和科学方法.

学生学习情况分析:

学生前面已经学习了随机事件的概率和古典概型,初步学会了用古典概型公式解决概率题,大多数学生对于概率的学习以及概率试验产生了浓厚的兴趣,逐渐会把一些问题模型化.但是学生在探究问题的能力,应用数学的意识等方面发展不够均衡,尚有待加强.

设计思想:

建构主义学习理论认为,建构就是认知结构的组建,其过程一般是引导学生从身边的、生活中的实际问题出发,发现问题,思考如何解决问题,进而联系所学的旧知识,首先明确问题的实质,然后总结出新知识的有关概念和规律,形成知识点,把知识点按照逻辑线索和内在联系,串成知识线,再由若干条知识线形成知识面,最后由知识面按照其内容、性质、作用、因果等关系组成综合的知识体。也就是以学生为主体,强调学生对知识的主动探索、主动发现以及学生对所学知识意义的主动建构.基于以上理论,本节课遵循引导发现、循序渐进的思路,采用问题探究式教学,让学生在观察分析、自主探索、合作交流的过程中建构几何概型的概念以及归纳出几何概型公式,运用实物、多媒体、投影仪辅助,倡导“自主、合作、探究”的学习方式.具体流程如下:

情境引入→概念形成→实际应用→课堂反思→作业布置

教学目标:

知识与技能目标:通过实例,让学生了解几何概型的概念以及几何概型与古典概型的区别.会计算简单的几何概型事件,并解决实际问题.

过程与方法目标:让学生经历概念的建构这一过程,进一步体会从特殊到一般的思想;通过实际应用,培养学生数形结合的能力,以及把实际问题抽象成数学问题的能力和学以致用的数学应用意识.

情感与态度目标:通过创设情境激发学生学习数学的情趣,培养其积极探索的精神.通过实际应用让学生体会到数学在现实生活中的价值,增强了学生学习数学的自信心.

教学重点与难点:

重点:理解几何概型的定义、特点、及几何度量的寻找,会用公式计算几何概率.

难点:从实际问题的背景中找几何度量.

教学过程设计:

情景引入

问题1我们前面都学过哪些求概率的方法?(本节课的问题和题目都用多媒体幻灯片展示)

问题2下面事件的概率能否用古典概型的方法求解?

[情景一]

教师取一根长度为60厘米的绳子,拉直后在任意位置剪断,使得剪出的两段的长都不小于绳子长度1/3(记为事件A),求此事件发生的概率.

师生共同探究:

此试验中,从每一个位置剪断都是一个试验结果,剪断位置可以是绳子上任一点,试验的可能结果为无限个,发现不是古典概型,不可以用古典概型的方法求解.

探索:

如图所示,把绳子三等分,于是当剪断位置在中间一段时,事件A发生,于是

教师:这个模型就是我们今天要学习的几何概率模型,简称几何概型.

(1)(2)[情景二]

(1)(2)

教师用多媒体展示商场里面的抽奖场景视频,拿出

如图中的两个转盘,规定当指针指向区域时顾客就中奖了;

问题3在两种情况下某顾客中奖的概率分别是多少?

学生思考并回答,可见在图(1)中,顾客中奖的概率为二分之一,

图(2)中顾客中奖的概率为五分之三.

[情景三]

一只苍蝇在一棱长为60cm的正方体笼子里飞.

问题4苍蝇距笼边大于10cm的概率是多少?

教师实物展示正方体框架,在里面嵌套一个小正方体框架.

学生思考并回答该问题.

问题5同学们观察对比,找出三个情景的共同点与不同点?

问题6同学们能否根据自己的理解说说什么是几何概型?

学生进行小组讨论,以小组为单位发言,对回答问题的同学通过摇转盘的形式发给小奖品,场面气氛活跃.

【设计意图】三个情景设置让学生发现试验的结果有无限个,因此发现它们不是古典概型,无法用古典概型的方法求解,然后师生探索此问题怎样解决,最后教师点题:这就是我们今天要学习的几何概型.情境一的设计是从长度方面考虑问题,是为了引入概念,情境二、三的设计从面积和体积方面考虑问题,是为了让学生全面了解几何概型的概念,并且渗透数形结合的数学思想方法.小组的讨论是为了培养学生的合作意识和团队精神,用转盘的形式

文档评论(0)

天马 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档