多边形及其内角和(导学案).docVIP

  1. 1、本文档共3页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多

年级:周次:课时:初级中学课堂导学案上课时间:年月日星期:

1、自主学习,完成导学案

2、小组合作探究

(1)同学全身心的投入讨论

(2)组内先一对一的讨论,遇有疑难再小组讨论

(3)小组内互助,“兵教兵”

(4)组长安排好展示的同学,其他同学巩固落实导学案。

3、分组展示

课题:多边形及其内角和设计人:备课组长:

学习目标:1.使学生了解多边形的内角、外角等概念.

2.能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关

课前培训

(1)组长控制好组员的学习效率与热情,高效地完成导学案。

(2)组长要充分发挥想象力创造力,多种形式的展示。

(3)展示时声音洪亮,仪态大方。

(4)评价及时到位,小组长评价组内的每一个同学,学科班长评价各小组及全班的情况。

一、学前准备

1、我们知道三角形的内角和为__________.

2、我们还知道,正方形的四个角都等于____°,那么它的内角和为_____°,同样长方形的内角和也是______°.

3、正方形和长方形都是特殊的四边形,其内角和为360度,那么一般的四边形的内角和为多少呢?

画一个任意的四边形,用量角器量出它的四个内角,计算它们的和,与同伴交流你的结果.从中你得到什么结论?

二、探索与思考

1.从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度?

2.从五边形一个顶点出发可以引几条对角线?它们将五边形分成几个三角形?那么这五边形的内角和为多少度?

3.从n边形的一个顶点出发,可以引几条对角线?它们将n边形分成几个三角形?n边形的内角和等于多少度?

综上所述,你能得到多边形内角和公式吗?

设多边形的边数为n,则

n边形的内角和等于______________.

想一想:要得到多边形的内角和必需通过“___________定理”来完成,就是把一个多边形分成几个三角形.除利用对角线把多边形分成几个三角形外,还有其他的分法

吗?你会用新的分法得到n边形的内角和公式吗?

三、理解与运用

例1如果一个四边形的一组对角互补,那么另一组对角有什么关系?

已知:四边形ABCD的∠A+∠C=180°.求:∠B与∠D的关系.

例2如图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和.六边形的外角和等于多少?

已知:∠1,∠2,∠3,∠4,∠5,∠6分别为六边形ABCDEF的外角.

求:∠1+∠2+∠3+∠4+∠5+∠6的值.

3、练一练:练习1、2、3题

四、自我检测

(一)、判断题.

1.当多边形边数增加时,它的内角和也随着增加.()

2.当多边形边数增加时.它的外角和也随着增加.()

3.三角形的外角和与一多边形的外角和相等.()

4.从n边形一个顶点出发,可以引出(n一2)条对角线,得到(n一2)个三角形.()

5.四边形的四个内角至少有一个角不小于直角.()

(二)、填空题.

1.一个多边形的每一个外角都等于30°,则这个多边形为边形.

2.一个多边形的每个内角都等于135°,则这个多边形为边形.

3.内角和等于外角和的多边形是边形.

4.内角和为1440°的多边形是.

5.一个多边形的内角的度数从小到大排列时,

恰好依次增加相同的度数,其中最小角为100°,最大的是140°,那么这个多边形是边形.

6.若多边形内角和等于外角和的3倍,则这个多边形是边形.

7.五边形的对角线有条,它们内角和为.

8.一个多边形的内角和为4320°,则它的边数为.

9.多边形每个内角都相等,内角和为720°,则它的每一个外角为.

10.四边形的∠A、∠B、∠C、∠D的外角之比为1:2:3:4,那么∠A:∠B:∠C:∠D=.

11.四边形的四个内角中,直角最多有个,钝角最多有个,锐角最多有个.

12.如果一个多边形的边数增加一条,那么这个多边形的内角和增加,外角和增加.

(三)、解答题.

1.一个多边形少一个内角的度数和为2300°.

(1)求它的边数;(2)求少的那个内角的度数.

2.一个八边形每一个顶点可以引几条

文档评论(0)

livestudy + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档